

For more information, please contact:
Evaluation Services Division
Public Schools Branch
Nova Scotia Department of Education
PO Box 578
Halifax, Nova Scotia
B3) 259

For more information about examinations and other provincial assessments visit our website at:
http://plans.ednet.ns.ca

A Study Guide for Grade 12 Students - Preparing for Nova Scotia Examinations in Mathematics (2005)

This material may be freely copied for educational purposes.
© Crown Copyright Province of Nova Scotia 2005
Department of Education
Evaluation Services Division
Public Schools Branch

Contents

A STUDY GUIDE
Introduction ii
Study Tips iii
Quadratics
Things to Remember iiii
Sequences 1
Using Graphing Technology 3
Transformations 8
Quadratic Functions 16
Determining Quadratic Functions 19
Roots of Quadratic Equations 21
The Nature of Quadratic Roots 26
ADVANCED MATH
29
Sequences
30
The Nature of Quadratic Roots
Exponential Growth
Things to Remember 32
Geometric Sequences 33
Exponential Functions. 37
Exponential Equations and Expressions 48
Logarithms 55
ADVANCED MATH
Transformations 60
Solving Exponential Equations and Simplifying Exponential Expressions 62
Logarithms 64
For Grade 12 Students Preparing for Nova Scotia Examinations in Mathematics
Circle Geometry
Things to Remember 66
Chord Properties. 67
Coordinate Geometry 72
ADVANCED MATH
Chord Properties and Proofs 77
Angles in a Circle 82
Equations of Circles and Ellipses 86
Probability
Experimental and Theoretical Probabilities 93
Counting and Probability 95
Combinations and Permutations 100
ADVANCED MATH
Conditional Probability 104

Introduction

You may not realize it, but math is a big part of our everyday lives. Spending money, making movies and music, building houses, getting medical treatments - these things all involve math. In fact, much of what we do and many of the things we use are only possible because of someone's understanding of math. That's why it's so important for everyone to have basic math skills. The math skills you learn in elementary, junior high, and high school can open many doors in your future. They will help you in further studies, in the workplace, and at home.

As a grade 12 math student, you've spent many years learning math skills and concepts. In the upcoming provincial math exams, you will have an opportunity to show what you've learned. The provincial exam will test you on all of the math principles and concepts you learned in the Mathematics 12 or Advanced Mathematics 12 course.

This Study Guide is meant to help you prepare for the provincial exam. It's a summary of the information you learned in class this year, and it outlines what you are expected to know by the end of the course. It's divided into the four units you've been studying: Quadratics, Exponential Growth,

Circle Geometry, and Probability. In this guide you will find...

- curriculum outcomes for each unit
- math concepts you should know
- examples of questions along with possible solutions
- questions for you to try on your own

As well as possible solutions to sample questions, we have also included examples of how your thinking process might work to help you choose suitable methods to solve a given problem.

As you prepare for this exam, your motto should be "practice, practice, and more practice." You will have to work hard - like studying for any math exam, this means reviewing and studying course material and doing plenty of practice questions. We also recommend that you talk about math. Talk to your teachers and your classmates about math concepts and solutions to math questions or problems.

While this Study Guide is a good start, you should also use your math textbook, class notes, and any tests or assignments to get ready for the exam.

Being prepared is the most important step toward success. Good luck with the exam!

Study Tips

FOR LEARNING MATHEMATICS

Nova Scotia students are expected to learn mathematics "with understanding." Learning with understanding means being able to apply concepts, procedures, and processes in the right places.

Often, developing understanding of a subject requires effort.
What can you do to help yourself learn mathematics? Here are some ideas:

1) Be an active participant in class.
2) Do your homework and assignments. Don't get behind in your work.
3) Manage your time wisely.
4) Prioritize your activities-your education comes FIRST.
5) Keep a complete and organized set of notes. Remember that your textbook is also a resource for you to read.
6) Reflect on your learning by reviewing material that you have previously learned.
7) Prepare for tests and exams many days in advance.

And how about when you're actually writing the exam? Here are a few ideas that can help:

1) Scan the entire exam.
2) Do the questions you consider to be routine or easy first. Manage your time wisely, making sure you don't spend too much time on any one question.
3) If the method to solve a problem is not specified, use the most efficient one.
4) Show all required work clearly. (Refer to the Study Guide for examples of complete solutions.)
5) When finished, check your work.

Quadratics

THINGS TO REMEMBER

$$
\text { If } y=a x^{2}+b x+c
$$

where a, b and c are real numbers and $a \neq 0$

If $\boldsymbol{b}^{2}-4 a c>0$ then either	If $b^{2}-4 a c=0$ then either	If $b^{2}-4 a c<0$ then either
0 R	0 R	0 R
The function has 2 real zeros therefore 2 distinct x-intercepts. The $\text { equation } a x^{2}+b x+c=0$ has two real roots.	The function has a double real zero and therefore one x-intercept. The equation $a x^{2}+b x+c=0$ has a double real root.	The function has two non-real zeros and therefore no x-intercepts. The equation $a x^{2}+b x+c=0$ has two non-real roots.
Zeros of the function and the roots of the equation are exactly: $\begin{aligned} & x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \\ & x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \end{aligned}$ If $b^{2}-4 a c$ is a perfect square an exact rational answer is required. If $b^{2}-4 a c$ is not a perfect square a decimal approximation is possible.	Zeros of the function and the roots of the equation are exactly: $\begin{aligned} & x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \\ & x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \end{aligned}$ An exact rational answer is obtained.	Zeros of the function and the roots of the equation are exactly: $\begin{aligned} & x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \\ & x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \end{aligned}$ Answers will be complex or imaginary and should be expressed as $x=a \pm b i(\text { where } i=\sqrt{-1})$
Vertex $a t\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$	Vertex $a t\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$	Vertex at $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
Transformational form is: $\frac{1}{a}\left(y-f\left(-\frac{b}{2 a}\right)\right)=\left(x+\frac{b}{2 a}\right)^{2}$	Transformational form is: $\frac{1}{a}\left(y-f\left(-\frac{b}{2 a}\right)\right)=\left(x+\frac{b}{2 a}\right)^{2}$	Transformational form is: $\frac{1}{a}\left(y-f\left(-\frac{b}{2 a}\right)\right)=\left(x+\frac{b}{2 a}\right)^{2}$
Axis of symmetry is $x=-\frac{b}{2 a}$	Axis of symmetry is $x=-\frac{b}{2 a}$	Axis of symmetry is $x=-\frac{b}{2 a}$

Quadratics

SEQUENCES

Ontanmes

I am expected to...

A7 describe and interpret domains and ranges using set notation
demonstrate an understanding of patterns that are arithmetic, power, and geometric and relate them to corresponding functions

129 analyse tables and graphs to distinguish between linear, quadratic, and exponential relationships

What do HAVEto know?

- What is a sequence? [C4]
- How could I model a sequence? [C4]
- How do I represent a sequence in a table? [C4]
- When is a graph discrete? How do I express the domain and range? [A7, C4]
- What is a power sequence? [C4]
- What is an arithmetic sequence? [C4]
- How do I identify if a power sequence is linear, quadratic, or cubic? [C4, C29]
- How could I model linear and quadratic functions? [C4, C29]
- Do I know when to use the formula $\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{1}+(\mathrm{n}-1) \mathrm{d}$? [C4, C29]
- Can I explain why this formula generates a sequence that is arithmetic? [C4]
- What conclusion can I reach from finding the differences called D_{1}, D_{2}, and D_{3} ? [C4, C29]

SEQUENCES

What Mctititnok Ikene

on the provincial exam?

E X A M P L E 1
Which of the following sequences could be generated by a quadratic function?
A. $\{1,2,3,4, \ldots\}$
B. $\{-5,-3,3,13, \ldots\}$
C. $\{2,4,8,12, \ldots\}$
D. $\{2,6,18,54, \ldots\}$

Ways of Thinking about Solutions

How do I use lists or tables to tell if a sequence can be generated by a quadratic function?
I should think about common differences.
If the second-level difference is constant, we know we have a quadratic.
A.

Yes

So, the answer is B.

Fan I D.Othasfan mV nwn?

1. Which of the following sequences could be generated by a quadratic function?
A. $\{2,4,6,8, \ldots\}$
B. $\{1,4,16,64, \ldots\}$
C. $\{2,5,8,12 \ldots\}$
D. $\{2,8,18,32, \ldots\}$
2. From the text, try the following questions:

Pages 5 and 6 (questions 12 and 13)
Page 72 (questions 1-3)

A STUDY GUIDE FOR STUDENTS PREPARING FOR

Quadratics

USING GRAPHING TECHNOLOGY

PAGES 15 TO 22 IN THE TEXT

DItIAOMAS

I am expected to...

describe and interpret domains and ranges using set notation
model real-world phenomena using quadratic functions
sketch tables and graphs from descriptions and collected data
describe and translate between graphical, tabular, written, and symbolic representations of quadratic relationships
analyse tables and graphs to distinguish between linear, quadratic, and exponential relationships
solve problems involving quadratic equations
analyse, determine, and apply scatter plots and determine the equations for curves of best fit, using appropriate technology

What do I HAVE to know?

- How do I enter data into my graphing calculator? [C1, F1]
- How do I determine the equation of the curve of best fit for my data? [C1, F1]
- What work should I show when I am using a graphing calculator? [C3]
- Can I state the domain and range of a quadratic function? [A7]
- Can I determine values from a graph or an equation of a function? [C8, C23, F1]
- By examining a graph, can I determine whether it is linear, quadratic, or exponential? [C8, C23]
- From a graph can I determine the maximum or minimum values? [C8, C23]
- How do I know when to use the vertex of a parabola to solve a problem? [C1, C23, F1]

USING GRAPHING TECHNOLOGY

- What information do the x-coordinate and y-coordinate of the vertex provide? [F1]
- How do I know, given the graph or the equation of a quadratic function, if it has a maximum or minimum value? [C8, C29, C23]
- How do I use the "maximum" or "minimum" feature on the graphing calculator to determine the coordinates for the vertex? [C8, C23]

What Mctitit In ok Ike

on the provincial exam?

EX A M PL E 1
At the Halifax Airshow, a plane performs a power dive. The equation $h=10 t^{2}-60 t+150$ expresses the relationship between height, h , in metres, and time, t , in seconds during the dive.
(a) What is the minimum height that the plane reaches during the dive?
(b) When will the plane be at a height of 100 m during the dive?

Ways of Thinking about Solutions

For part (a), what is a minimum value, and where do I find it on the graph?
How do I use my calculator to graph the given function and find the minimum value?
For part (b), how do I use my table feature to evaluate the function for $h=100$?"

a) The plane reaches a minimum height of 60 m .
b) Using the table feature

\therefore the plane will be at a height of 100 m after 1 second, and again after 5 seconds.

USING GRAPHING TECHNOLOGY

Graph $y_{1}=10 x^{2}-60 x+150$
Read the x-values of the intersection points.

EX A MP LE 2

The function $y=3 x^{2}-12 x$ has
A. a minimum value of -12
B. a minimum value of 2
C. a maximum value of -12
D. a maximum value of -2

Ways of Thinking about Solutions

How do I know from the equation if I have a maximum or minimum value?
Looking at the coefficient of x^{2} indicates whether I have a maximum or minimum value. The graph shows that it is a minimum because it opens upward.

I see on the graph that the minimum value. must be negative, so A is the right answer.

USING GRAPHING TECHNOLOGY

E X A M PLE 3

A ball is released and rolls down an inclined plane. The distance it travels with respect to time since release is recorded in the following scatter plot:

It was determined that a quadratic function would best represent this data set.
(a) Using your graphing calculator, do a quadratic regression and fill in the values for a, b, c, and R^{2} that you obtained on your graphing calculator.

The quadratic function is \qquad .
(b) What is the significance of the R^{2} value obtained?
(c) Given the ordered pair (6, ?), determine the missing coordinate. What does this ordered pair represent in the context of the given problem?

USING GRAPHING TECHNOLOGY

Ways of Thinking about Solutions

How do I enter data into my graphing calculator?
How do I use the calculator to graph the curve of best fit?
a) Enter the data into List I and List, then use quad leg L_{1}, L_{2}

$$
\left.\begin{array}{l}
a=3.5 \\
b=-1.5 \\
c=1 \\
R^{2}=1
\end{array}\right\} \text { so, the equation is } \quad 4=3.5 x^{2}-1.5 x+1
$$

b) A value of 1 for R^{2} means that the equation fits the data perfectly.

To answer part (c), how do I use either the equation obtained, the graph of the function, or its table to determine the y-value when $\mathrm{x}=6$?
c) $y(6)=3.5(6)^{2}-1.5(6)+1=118$, so $(6,118)$.

This coordinate tells us that the ball will have travelled $1 / 8 \mathrm{~cm}$ in 6 sec .

Fan I DO these on m' own?

1. A batter hits a ball, and its height, h, in metres, with respect to time, t, in seconds, is expressed by the function $h=-5 t^{2}+10 t+1$. What is the maximum height of the ball and what is the time required for the ball to reach its maximum height?
2. From the text, try questions 5 and 6 on page 16 and question 5 on page 72 .

TRANSFORMATIONS

PAGES 24 TO 31 IN THE TEXT

Outhamms

I am expected to...

A7 describe and interpret domains and ranges using set notation
B1 demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations
©8. describe and translate between graphical, tabular, written, and symbolic representations of quadratic relationships
(1) translate between different forms of quadratic equations

م81 analyse and describe the characteristics of quadratic functions
(132. demonstrate an understanding of how the parameter changes affect the graphs of quadratic functions

What do - Hav= to know?

- How can I change a quadratic function between transformational form, standard form, and general form? [B1, C9]
- Can I identify the transformations on $y=x^{2}$ when the function is in either transformational form or in standard form? [C31, C32]
- Can I determine the vertex from an equation of a quadratic function? [C31, C32]
- Can I determine the domain and range from a graph? [A7]
- What is an axis of symmetry and how is it related to the vertex? [C31]
- Can I express the transformations as a mapping rule? Can I write an equation or sketch a graph from a mapping rule? [C8, C31, C32]
- How do I use a graph to determine the transformations? [C31, C32]

TRANSFORMATIONS

- How do I determine an equation of a quadratic function given its graph? [C8, C32]
- Do I know the significance of the y-intercept? [C31, C32]
- What effect will changing the value of a or c in the function $y=a x^{2}+b x+c$ have on the graph? [C32]

What Mceritank Ike

on the provincial exam?

```
E X A M P L E 1
```

What mapping rule describes the transformation of graph 1 onto graph 2?

A. $(x, y) \rightarrow(x+5,-1 / 2 y-7)$
B. $(x, y) \rightarrow(x-7,-1 / 2 y-5)$
C. $(x, y) \rightarrow(x+5,-2 y+7)$
D. $(x, y) \rightarrow(x-7,-2 y+5)$

Ways of Thinking about Solutions

How do I use the graph to describe the transformations in a mapping rule?
The vertex has moved from $(0,0)$ to $(-7,5)$, U need to check if D includes a reflection and a stretch of 2 . I see -2 as the coefficient of the " y " in the mapping rule, : D is correct

Quadratics

TRANSFORMATIONS

E X A M P LE 2

The function $y=a x^{2}+b x+c$ is represented by the following graph:

Which one of the following statements is true?
A. $c>0$
B. $c=0$
C. $c<0$
D. c is an imaginary number

Ways of Thinking about Solutions

What does the value of c in the function $y=a x^{2}+b x+c$ represent, and how do I determine the y-intercept of the function?
> C^{\prime} is the y-intercept value, which on this graph is zero, so B. $c=0$, must be the correct answer.

E X A M P LE 3

A parabola has a minimum value at its vertex $(1,3)$. Which one of the following statements describes the domain and range of the function represented by this parabola?
A. $\quad\{x \in \mathbb{R}\}$ and $\{y \in \mathbb{R}\}$
B. $\quad\{x \in \mathbb{R} \mid x \leqslant 1\}$ and $\{y \in \mathbb{R}\}$
C. $\{x \in \mathbb{R} \mid x \geqslant 1\}$ and $\{y \in \mathbb{R} \mid y \geqslant 3\}$
D. $\{x \in \mathbb{R}\}$ and $\{y \in \mathbb{R} \mid y \geqslant 3\}$

TRANSFORMATIONS

Ways of Thinking about Solutions

Is this graph opening upward or downward? How can I determine the domain and range from a graph?
If There is a vertex at $(1,3)$ and it represents a minimum, thew the graph looks something like this

$$
\begin{aligned}
& \text { So the range is: } \\
& y \geq 3 \quad y \in R \\
& \text { The domain is } x \in R \\
& \therefore D \text { must be the right answer }
\end{aligned}
$$

EX A M PL E 4

A quadratic function is represented by this graph:

(a) Write the equation of the quadratic function (in general form).
(b) State the domain and range.

Quadratics

TRANSFORMATIONS

Ways of Thinking about Solutions

How do I determine an equation of a function, given a graph, and how do I write it in general form?
a) The pattern from the vertex for $y=x^{2}$ is over 1, up 1, over 2, up 4.
From the graph, I can see that the pattern is over 1, down 2; over 2, down 8, therefore a vertical stretch of $2(a=2)$ and a reflection in the x-axis (parabola opening downevards).

$$
-1 / 2(y-8)=(x-2)^{2}
$$

So in general form: $\quad y-8=-2\left(x^{2}-4 x+4\right)$ $y=-2 x^{2}+8 x-8+8$ $y=-2 x^{2}+8 x$.

01

The vertex is at $(2,8)$
so $\quad 1 / a(y-8):(x-2)^{2}$
To determine the value of " a ", substitute
a coordinate point from the graph into the equation... $(1,6)$ is on the graph....

$$
\begin{aligned}
& \frac{1}{a}(6-8)=(1-2)^{2} \\
& -2 / a=1 \\
& -2=a \\
\therefore & \frac{-1}{2}(y-8)=(x-2)^{2}
\end{aligned}
$$

So in general form: $\begin{aligned} & y-8=-2\left(x^{2}-4 x+4\right) \\ & y=-2 x^{2}+8 x-8+8\end{aligned}$ $y=-2 x^{2}+8 x-8+8$
$y=-2 x^{2}+8 x$

Or

I could hove used the graphing calculator

- determine at least 3 points from graph
- enter into lists
- use quadReg.

Quadratics

TRANSFORMATIONS

For part (b), how can I express the domain and range?

> Domain: $\left\{\begin{array}{l}\{x \in R\} \\ \text { Range: }\end{array} \quad\{y \in R \mid y \leq 8\}\right.$
> Or

```
Domain: \(x \in(-\infty, \infty)\)
Range: \(y \in(-\infty, 8]\)
```


EX A M P LE 5

A batter hits a ball, and its height, h, in metres, with respect to time, t, in seconds, is expressed by the function $h=-5 t^{2}+10 t+1$. What was the initial height of the ball when it was hit?

Ways of Thinking about Solutions

Do I know that the y-intercept is the initial position of a projectile, and how do I determine the y-intercept from the function?

The y-intercept is $(0,1)$, so the initial hight was 1 m .

01

$$
\begin{aligned}
& h(0)=-5(0)^{2}+10(0)+1 \\
&=1 \\
& \therefore \text { the initial height was } 1 \mathrm{~m}
\end{aligned}
$$

TRANSFORMATIONS

EX A M PL E 6

Which one of the following is correct? The graph of the function $y=(x+7)^{2}+4$ is the image of $y=x^{2}$ after
A. a horizontal translation of 7 and a vertical translation of 4
B. a horizontal translation of -7 and a vertical translation of 4
C. a horizontal translation of 7 and a vertical translation of -4
D. a horizontal translation of -7 and a vertical translation of -4

Ways of Thinking about Solutions

How can I determine the transformations on $y=x^{2}$ when the equation of the function is in standard form?

$$
\begin{aligned}
& y=(x+7)^{2}+4 \\
& \text { horizontal translation of }-7 \\
& \text { vertical translation of } 4 \\
& \therefore B \text { is correct }
\end{aligned}
$$

EX A M PL E 7

Which quadratic function best represents this graph? (a, h, and k are positive real numbers)

A. $y=-a(x-h)^{2}+k$
B. $y=-a(x+h)^{2}-k$
C. $y=a(x+h)^{2}-k$
D. $y=a(x-h)^{2}+k$

[^0]
TRANSFORMATIONS

Ways of Thinking about Solutions

Given a graph, how do I determine the equation of the function, and how can I see the transformations of $y=x^{2}$ when the equation is in standard form?

The graph opens downward so the coefficient of x^{2}, " a " must be negative. So either A ar B. The vertex is (t, t), so A must be correct.

$$
\begin{aligned}
& y=-a(x-h)^{2}+k \\
& v \quad l \\
& \text { opens } h t \text { is" } k \text { " }
\end{aligned}
$$

ARII DO thasfan mV OWIT?

1. Given that the quadratic function $y=3(x-2)^{2}+5$ is the image of $y=x^{2}$ after some transformation, determine the transformations and determine its mapping rule.
2. The function $y=a x^{2}+b x+c$ is represented by this graph:

Which of the following statements is true?
A. $a>0$ and $c>0$
B. $a>0$ and $c<0$
C. $a<0$ and $c<0$
D. $a<0$ and $c=0$
3. From the text, try questions $6,8,9$, and 10 on pages 30 and 31 .

Quadratics
 QUADRATIC FUNCTIONS

PAGES 31 TO 35 IN the text

Antanmas

I am expected to...

demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations
describe and translate between graphical, tabular, written, and symbolic representations of quadratic relationships
translate between different forms of quadratic equations
solve problems involving quadratic equations

What do lHAVE to know?

- How can I rewrite a quadratic function from general form to transformational form? [B1, C9]
- What does "completing the square" mean? [B1, C9]
- When do I need to complete the square? [B9, C9, C23]

What MIGHT it lonk Ifra on the provincial exam?

E X A M P L E
 1

Given the function $y=-3 x^{2}+6 x+3$, show how to change the equation of the function into transformational form.

Ways of Thinking about Solutions

Can I rewrite the equation of a function from general form to transformational form by completing the square? Do I know what procedure to follow to complete the square?

Algebraically from general to
transformational form.

$$
\begin{aligned}
& y=-3 x^{2}+6 x^{2}+3 \\
& -1 / 3 y=x^{2}-2 x-1 \\
& -1 / 3 y+1=x^{2}-2 x \\
& -1 / 3 y+1+1=x^{2}-2 x+1 \\
& -1 / 3 y+2=(x-1)^{2} \\
& -1 / 3(y-6)=(x-1)^{2}
\end{aligned}
$$

Or
Graphically

From the graph, 4 can see the vertex is $(1,6)$, Therefore $-1 / a(y-6)=(x-1)$
The coefficient of x^{2} is -3 therefore the parabola is reflected in the x-axis with a vertical stretch of 3.
$\therefore \frac{-1}{3}(y-6):(x-1)^{2}$

EX A M P LE 2

At the Halifax Airshow, a plane performs a power dive. The equation $h=10 t^{2}-60 t+150$ expresses the relationship between height, h, in metres, and time, t, in seconds during the dive. (Solve this question algebraically.)
(a) What is the minimum height that the plane reaches during the dive?
(b) When will the plane be at a height of 100 metres during the dive?

Quadratics

QUADRATIC FUNCTIONS

Ways of Thinking about Solutions

For part (a), Should I rewrite the equation in transformational form, and how can I do this algebraically? How do I know when I will need to use the "completing the square" procedure? What do I have to do to complete the square?
it'm asked for 'minimum Keight'therfore
el must change the equation in transformational
$h=10 t^{2}-60 t+150$
$h-150=10\left(t^{2}-6 t\right)$
$h-150+90=10\left(t^{2}-6 t+9\right)$
$h-60=10(t-3)^{2}$
$\frac{1}{10}(h-60)=(t-3)^{2}$
Vertex is at $(3,60)$
\therefore Minimum e height is at 60 m .
[See also the graphical approach taken to solve this problem when it first appears on pages 4 and 5] For part (b), how do I solve the equation for tween given an h-value?

$$
\text { If } h=100 \text { then } \begin{aligned}
& \frac{1}{10}(100-60)=(t-3)^{2} \\
& \frac{1}{10}(40)=(t-3)^{2} \\
& 4=(t-3)^{2} \\
& \sqrt{4}=\sqrt{(t-3)^{2}} \\
& \pm 2=t-3 \\
& t=5 \text { or } t=1
\end{aligned}
$$

Fan do these on my own?

1. Given the function $y=-2 x^{2}+4 x-5$,
(a) Write the function in standard form.
(b) Write the vertex coordinates.
(c) What is the equation of the axis of symmetry?
2. From the text, try the following questions:

Pages 32 to 35 (questions 15, 17-23, and 26-30)
Pages 72 and 73 (questions 6-9 and 11)

Quadratics

DETERMINING QUADRATIC FUNCTIONS

OIthames

I am expected to...

demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations

describe and translate between graphical, tabular, written, and symbolic representations of quadratic relationships
solve problems involving quadratic equations

What do I HAVE to know?

- When I read a problem, do I know how to model it using a quadratic function? [C23]
- To determine a quadratic equation, what information do I need? [C8]
- If I'm given the coordinates of the vertex and one other point on the parabola, how can I determine the equation of the quadratic function? [B1, C8]

What Mceritit Inok Iiks

on the provincial exam?

1. Write the equation of the quadratic function (in general form) shown in this graph:

Quadratics

DETERMINING QUADRATIC FUNCTIONS

Ways of Thinking about Solutions

What information do I need to determine the equation of a function from a graph?
How do I write the function in general form?

$$
\begin{aligned}
& \text { The vertex is }(2,8) \text { so } \frac{1}{a}(y-8)=(x-2)^{2} \\
& \text { Another point on the graph is }(3,6) \text { so } \\
& \frac{1}{a}(6-8)=(3-2)^{2} \\
& -\frac{2}{a}=1 \\
& a=-2 \\
& \therefore-\frac{1}{2}(y-8)=(x-2)^{2} \\
& \text { so } y-8=-2(x-2)^{2} \\
& y=-2\left(x^{2}-4 x+4\right)+8 \\
& y=-2 x^{2}+8 x-8+8 \\
& y=-2 x^{2}+8 x
\end{aligned}
$$

Fan I DO these on mr own?

1. What is the equation of a quadratic function that has a vertex at $(-3,7)$ and passes through ($4,-1$)?
2. The arch of a tunnel has the shape of a parabola. Its highest point is 9 m above the centre of the road, which is 5 m from the edge of the tunnel. Can a truck that is 3 m wide and 5 m high pass through the tunnel?
3. From the text, try the following questions:

Pages 38 and 39 (questions 39-45)
Page 73 (questions 10(a) and 10(b))

Ouadratics

ROOTS OF QUADRATIC EQUATIONS

Outcomes

I am expected to...

demonstrate an understanding of the role of irrational numbers in applications

A9 represent non-real roots of quadratic equations as complex numbers
demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations

B10 derive and apply the quadratic formula

C8 describe and translate between graphical, tabular, written, and symbolic representations of quadratic relationships

What do LHAVE to know?

- Can I use the four methods for solving quadratic equations: graphing, factoring, completing the square, and using the quadratic formula? [C8, C22]
- Can I recognize which method is most efficient to use? [C22]
- Do I know how to use the CALC menu to solve quadratic equations? [C22]
- When I solve a quadratic equation, what does the solution represent? [C22]
- What is the relationship between roots, x-intercepts, zeros, and solutions of quadratic equations? [C22]
- Can I solve an equation in the form $a x^{2}+b x+c=0$ to show where the quadratic formula comes from? [B10]

ROOTS OF QUADRATIC EQUATIONS

- Do I know that $x=-\frac{b}{2 a}$ is the axis of symmetry?
- Can I determine the y-value of the vertex knowing the x-coordinate? The vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
- Do I understand that I have non-real roots (imaginary roots) when the discriminant is negative? [A9]
- Do I know how to write non-real roots as complex numbers? [A9]
- Do I know when it is better to write irrational roots as "exact" roots, or as decimal approximations? [A3, C23]
- Do I realize that when I read the words "maximum" or "minimum" I need to determine the vertex of the quadratic? [C22, C23]

What MICHT it look like.,
 on the provincial exam?

```
E X A M P L E 1
```

The function $h=-5 h^{2}+20 t+2$ describes the height of a baseball, h, in metres, as a function of time, t, in seconds, from the instant the ball is hit. Mark solved the equation $-5 t^{2}+20 t+2=0$, and its positive root represents
A. the initial height of the ball
B. the maximum height of the ball
C. the time it takes for the ball to reach a maximum height of 2 m
D. the time it takes for the ball to hit the ground

Ways of Thinking about Solutions

When I solve a quadratic equation, what does the solution represent?

> When solving $-5 t^{2}+20 t+2=0$, \& know that the height is 0 . Therefore my positive " t " value represents the time it takes the ball to hit the ground. $\therefore D$ is the correct answer.

[^1]
ROOTS OF QUADRATIC EQUATIONS

EX A M PL E 2

Solve the following equation. If the roots) are non-real, express in terms of i .
$2 x^{2}+6 x=-17$

Ways of Thinking about Solutions

Do I know what solving the equation means?
First step: Recurite the equation in general form $\left(a x^{2}+b x+c=0\right)$

$$
2 x^{2}+6 x+17=0
$$

Consider factoring... will not factor
Use the quadratic formula

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-6 \pm \sqrt{(6)^{2}-4(2)(17)}}{2(2)} \\
& x=\frac{-6 \pm \sqrt{-100}}{4}
\end{aligned}
$$

If the discriminant is negative, do I know how to write these roots as complex numbers?

$$
x=\frac{-6 \pm 10 i}{4} \text { (1) } x=-\frac{3}{2}+\frac{5 i}{2} \text { and } x=-\frac{3}{2}-\frac{5 i}{2}
$$

```
E X A M P L E 3
```

A photograph measures 40 mm by 62 mm . A frame of uniform width is placed around the photograph, doubling the area. What is the width of the frame?

ROOTS OF QUADRATIC EQUATIONS

Ways of Thinking about Solutions

Begin by sketching a diagram that incorporates all the information, and then form an equation.
Sketch a diagram, if possible:

$$
\begin{aligned}
& \text { Area of picture }=62 \times 40 \\
& =2480 \\
& \text { Area of picture }+ \text { frame }=2(2480) \\
& \begin{aligned}
&(62+2 x)(40+2 x)=4940 \\
& 2480+80 x+124 x+4 x^{2}=4960 \\
& 4 x^{2}+204 x-2480=0 \\
& x^{2}+51 x-620=0
\end{aligned}
\end{aligned}
$$

Do I know how to solve a quadratic equation and when it is better to write irrational roots as "exact" roots or as decimal approximations?

$$
\begin{array}{rlrl}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-51 \pm \sqrt{2601+2480}}{2} \quad \text { (Since \& am looting } \\
& =\frac{-51 \pm 11.28}{2} \quad \text { A sur a st find the } \\
& & & \\
& & \text { decimal approximation) } \\
&
\end{array}
$$

The width can't be negative, so
the width of the frame is 10.14 mm .
01

We the graphing calculator to graph
$y=x^{2}+51 x-620$

When $y=0, x^{2}+51 x-620=0$
\therefore The positive zero of
The function represents
the solution.
The width of the frame
is 10.14 mm .

[^2]
ROOTS OF QUADRATIC EQUATIONS

Fan DoOthasfan mV nwn?

From the text, try the following questions:
Pages 44 to 47 (questions 8 - $12,15,16,21$, and 22)
Page 49 (questions 28-32)
Pages 52 and 53 (questions 37, 39-41)
Page 54 (questions 44, 45, 48, and 49)
Page 73 (questions 14-16)

THE NATURE OF QUADRATIC ROOTS

Outhonmes

I am expected to...

A4. demonstrate an understanding of the nature of the roots of quadratic equations
49 represent non-real roots of quadratic equations as complex numbers
B11 derive and apply the quadratic formula
(115) relate the nature of the roots of quadratic equations and the x-intercepts of the graphs of the corresponding functions

What do I Halve to know?

- Do I know how to calculate the "discriminant"? What can I conclude about the roots of the equation when I know the value of the discriminant? [A4]
- Do I understand that $\sqrt{-1}=\mathrm{i}$? [A9]
- Do I know that if I'm given two roots of a quadratic equation, I can derive the equation? [A4, C15]

What Mceritit lonk Iiken

on the provincial exam?

E X A M P L E 1
If the roots of a quadratic equation are -2 and 4 , the discriminant is
A. an imaginary number
B. 0
C. a positive number
D. a negative number

THE NATURE OF QUADRATIC ROOTS

Ways of Thinking about Solutions

Do I know that if the discriminant has a positive value there will be two distinct x-intercepts for the graph of the corresponding function?

If there are 2 real different roots $\left(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$
The discriminant $\left(b^{2}-4 a c\right)$ must be positive so, C is the answer.

EX A M PL E 2

Select the correct graph for $y=-(x-m)(x-n)$, if $m>0$ and $n>0$.
A.

B.

C.

D.

THE NATURE OF QUADRATIC ROOTS

Ways of Thinking about Solutions

Looking at the coefficient of the x^{2} term, I can determine if there is a reflection in the x-axis.
Then, because the function is in factored form, I can determine whether the zeros are positive or negative.

The coefficient of x^{2} is negative, therefore there is a reflection in the x-axes. so esters A or C are passible solutions. If $m>0$ and $n>0, \therefore$ bath roots are positive so A is correct

Fanlld.Othesemn mv own?

From the text, try the following questions:
Pages 55 to 57 (questions 51-60)
Page 74 (question 19)

Quadratics

SEQUENCES

PAGES 11 TO 14 IN THE TEXT

Outcomes

I am expected to...

C10 [ADV] determine the equation of a quadratic function using finite differences

What do HAVE to know?

- Do I know when to use the finite difference to determine a quadratic equation in general form?
- Do I know that D_{2} is equal to twice the a-value in the general form of the quadratic $y=a x^{2}+b x+c$?
- If I know the a-value, how do I calculate the b and c-values?
- Knowing the a, b, and c - values, can I write the general form of the equation?

Can I DO these on my own?

1. Determine algebraically, using finite differences, the function that represents the relationship between the x-values and the y-values in the given table.

\times	1	2	3	4	5	6
y	5	19	43	77	121	175

2. The number of shaded triangles in the following figures forms a sequence. Algebraically determine the function that will generate the sequence.

3. From the text, try the following questions

Pages 12 to 14 (questions 38-42)
Page 73 (questions 10(c), 10(d), and 12)

THE NATURE OF QUADRATIC ROOTS
PAGES 58 AND 59 IN THE TEXT
nutenmes
I am expected to...
(A4) demonstrate an understanding of the nature of the roots of quadratic equations
Note: Although this is not an advanced outcome, students in the advanced course should also understand that the sum and product of the roots r_{1} and r_{2} are related to the coefficients of the general quadratic equation $a x^{2}+b x+c=0$ in this way $r_{1}+r_{2}=-\frac{b}{a}$ and $r_{1 \times} r_{2}=\frac{c}{a}$.

- Do I know how to use the sum and product of roots of a quadratic equation to determine an equation that has those roots?
- Do I know that there is an infinite number of quadratic equations with those roots?

1. A parabola crosses the x-axis at and 5 .
(a) Write a function in general form representing such a parabola.
(b) Write a function representing all the parabolas that have x-intercepts at and 5 .
2. From the text, try the following questions:

Pages 57 to 59 (questions 61-72)
Page 74 (question 18)
\qquad

Exponential Growth THINGS TO REMEMBER

For $y=a b^{x}$

For $y=a \log _{b} x$

| a>0 | |
| :---: | :---: | :---: |
| | |

Notice that the log curve does not cut the y-axis and therefore the log of zero or the log of a negative number is not defined in real numbers

Rules for using Exponents and Logs

Exponents	Logs
$a^{m} \cdot a^{n}=a^{m+n}$	$\log _{n}(a \cdot b)=\log _{n} a+\log _{n} b$
$a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$	$\log _{n}(a \div b)=\log _{n}\left(\frac{a}{b}\right)=\log _{n} a-\log _{n} b$
$\left(a^{m}\right)^{n}=a^{m \cdot n}$	$\log _{n} a^{m}=m \log _{n} a$
$\left(\frac{a^{n}}{b^{m}}\right)^{p}=\frac{a^{n \cdot p}}{b^{m \cdot p}}$	$\log _{n} a=\frac{\log a}{\log n}$
$a^{-n}=\frac{1}{a^{n}} \text { and } a^{n}=\frac{1}{a^{-n}}$	$x=n^{y} \Leftrightarrow y=\log _{n} x$
$a^{\theta}=1$	$\therefore y=\log _{n} x$ means " y is the exponent to which you raise the base n to get the answer x.
If $\boldsymbol{a}^{p}=a^{q}$ then $\boldsymbol{p}=\boldsymbol{q}$	If $\log _{n} x=\log _{n} y$ then $x=y$

Exponential Growth
 GEOMETRIC SEQUENCES

PAGES 110 TO 115 IN THE TEXT

nintenmes

I am expected to...

47 describe and interpret domains and ranges using set notation
(13) sketch tables and graphs from descriptions and collected data

P4 demonstrate an understanding of patterns that are arithmetic, power, and geometric and relate them to corresponding functions

109 analyse tables and graphs to distinguish between linear, quadratic, and exponential relationships

138 analyse and describe the characteristics of exponential and logarithmic functions

What io I HAN: to know?

- What is a geometric sequence? [C4, C33]
- If I graph a geometric sequence from a table, is the graph discrete or continuous? What are the domain and range, and how do I express them? [A7, C3, C4]
- What is a common ratio, and how do I determine it? [C4, C33]
- How can I determine if a function is linear, quadratic, cubic, or exponential? [C4, C29, C33]
- How do I distinguish arithmetic and other power sequences, from geometric sequences? [C4, C29, C33]
- Can I explain why the formula $\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{1}(r)^{n}$ generates a sequence that is geometric? [C4, C33]

GEOMETRIC SEQUENCES

- Do I know that graphs of geometric sequences can form growth and decay curves? [C3, C33]
- How do I know when an exponential graph is a growth curve or a decay curve? [B2, C3, C33]

What Merit look like

on the provincial exam?

EX A M P LE 1

What type of function would best model the data in the table below?

x	y
1	21.4
2	45.6
3	72.6
4	102.4
5	135.0

A. linear
B. quadratic
C. logarithmic
D. exponential

Ways of Thinking about Solutions

How do I determine from a table the type of function that best models the sequence of y-values ?
H eves the value of " x^{4} change by the same increment? If yes, verify first and second level differences for the y-values.

D_{2} has constant terms of 2.8 .
\therefore the sequence can be modelled with a quadratic function the answer is B

GEOMETRIC SEQUENCES

EX A M PL E 2
Which of the following table of values is an exponential function?

A. | x | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| y | 9 | 16 | 25 | 36 |

B. | x | 2 | 6 | 8 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| y | 6 | 12 | 24 | 48 |

C. | x | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| y | 1 | 7 | 13 | 19 |

D. | x | 2 | 5 | 8 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| y | 24 | 12 | 6 | 3 |

Ways of Thinking about Solutions

The x-values have to change by the same increment... and from the table I have to check for a common ratio between y-values.

The tables A, C, and D have x-values that change by the came increment, but the y-values for A and C
do not produce a common ratio while D does. Sa D is the correct answer. (Un table B, the y-values form a common Ratio, but the x-values do not change by the same increment.

EX A M P LE 3

Is $2^{x}, 2^{x+2}, 2^{x+4}$ a geometric sequence? Explain your reasoning.

Exponential Growth

 GEOMETRIC SEQUENCES
Ways of Thinking about Solutions

To be geometric there has to be a common ratio.
Find a common ratio

$$
\begin{aligned}
& \frac{t_{2}}{t_{1}} \stackrel{?}{=} \frac{t_{3}}{t_{2}} \\
& \frac{2^{x+2}}{2^{x}}=2^{2}=4 \\
& \frac{2^{x+4}}{2^{x+2}}=2^{2}=4
\end{aligned}
$$

Since the successive terms have a common ratio of 4 , it is qumetric. (Substituting a specific value for x does not determine that $2^{x}, 2^{x+2}, 2^{x+4}$ is a geometric sequence for all values of x.)

Fan DO these mi mV owns

1. Which is a geometric sequence?
A. $1,3,5,7, \ldots$
B. $2,4,6,8, \ldots$
C. $4,7,12,19, \ldots$
D. $1.5,3.0,6.0,12.0, \ldots$
2. Show how to determine the function that generates the following sequence:
$\left\{3^{-2}, 3^{-1}, 1,3, \ldots\right\}$
3. Try these questions from the text:

Pages 112 and 113 (questions 7,8 10, 11)
Pages 199 and 200 (questions 2 and 3)

Exponential Growth
 EXPONENTIAL FUNCTIONS

PAGES 115 TO 141 IN THE TEXT

Outanomes

I am expected to...
A5 demonstrate an understanding of the role of real numbers in exponential and logarithmic expressions and equations

A7 describe and interpret domains and ranges using set notation

B12 apply real number exponents in expressions and equations

C2 model real-world phenomena using exponential functions
C3 sketch tables and graphs from descriptions and collected data
025 solve problems involving exponential and logarithmic equations

C33 analyse and describe the characteristics of exponential and logarithmic functions
C34 demonstrate an understanding of how the parameter changes affect the graphs of exponential functions

F1 analyse determine, and apply scatter plots and determine the equations for curves of best fit, using appropriate technology

What do HAVE to know?

- What type of real-life situations can be modelled by exponential functions? [C2]
- Do I know that compound interest grows exponentially, and do I know how to calculate it? [C2, C33]
- Do I understand that the focal point on an exponential graph is the point $(0,1)$ and that all exponential functions of the form $\mathrm{y}=\mathrm{b}^{\mathrm{x}}$, where $\mathrm{b} \neq 0$, pass through this point? [C33]
- What is an asymptote? [C3, C33]

Exponential Growth

EXPONENTIAL FUNCTIONS

- Do I understand that data on an exponential curve approaches an asymptote? [C3, C33]
- Can I determine and express the domain and range of an exponential function? [A7]
- Can I evaluate expressions with positive, zero, and negative exponents? [A3, B12]
- Do I know that the graph of $y=2^{-x}$ is a reflection in the y-axis of the graph of $y=2^{x}$? [C3, C33, C34]
- How does changing the values of a and b for $y=a b x$ transform its graph? [C34]
- Can I distinguish between a growth curve and a decay curve? [A5, C33, C34]
- Do I know how to determine the equation of an exponential function from a table? From a graph? [C2, C11, C33, C34]
- Do I know how to use ExpReg on the graphing calculator to determine the equation of an exponential function? [F1]
- From a table of values, do I know that the initial value a, in $y=a b x$ is found where the x-value is zero? [C33, C34]
- Do I know how to determine the horizontal asymptote of an exponential graph from the corresponding function? [C33, C34]
- Do I know how to solve word problems using exponential equations and functions? [A5, B12, C2, C25]

What MIGHT it look Ikea.

on the provincial exam?

EX A M P LE 1

27^{-2} has the same value as
A. -27^{2}
B. 3^{-6}
C. $\left(-\frac{1}{9}\right)^{4}$
D. $\left(-\frac{1}{3}\right)^{4}$

Ways of Thinking about Solutions

Can I rewrite the given expression in a different form and/or using a different base?

$$
27^{-2}=\left(\frac{1}{27}\right)^{2}=\left(\frac{1}{3^{3}}\right)^{2}=\left(\frac{1}{3}\right)^{6}=3^{-6}
$$

$\left(3^{3}\right)^{-2}=3^{-6}$
So B is the answer

$$
\text { EX A M P LE } 2
$$

What is one half of 220 ?
A. 2^{10}
B. 120
C. 2^{19}
D. 110

EXPONENTIAL FUNCTIONS

Ways of Thinking about Solutions
What does "one-half of" mean?

$$
\begin{aligned}
& \frac{1}{2} \cdot 2^{20} \text { Or } \frac{2^{20}}{2}=2^{20-1}=2^{19} \\
& 2^{-1} \cdot 2^{20} \\
& 2^{20-1}=2^{19} \\
& \text { so } c \text { is carrect }
\end{aligned}
$$

$$
\text { EX A M PL E } 3
$$

Select the graph that best represents this situation: "A car depreciates at a rate of 30% per year."

EXPONENTIAL FUNCTIONS

Ways of Thinking about Solutions

How can I tell from the graph that the value is depreciating?
This situation must be represented by a decay curve, therefore only D can be the conect answer.

EX A M P LE 4
Which function is the same as $y=4(2)^{x}$?
A. $4 y=2^{x}$
B. $y=2^{x+2}$
C. $y=2^{2 x}$
D. $y=8^{x}$

Ways of Thinking about Solutions

How do I rewrite the given function?

$$
\begin{aligned}
4 & =4\left(2^{x}\right) \\
& =2^{2}\left(2^{x}\right) \\
& =2^{x+2}, \text { so } \underline{B} \text { is correct. }
\end{aligned}
$$

EX A M P LE 5
Which of the following functions forms a decay curve?
A. $y=0.2^{-x}$
B. $y=0.2^{x}$
C. $y=2^{2 x}$
D. $-y=0.2^{-x}$

Exponential Growth

EXPONENTIAL FUNCTIONS

Ways of Thinking about Solutions

A decay curve has to have a base less than one but greater than zero.

EX A M PL E 6

Show how to evaluate the expression $\left(4^{-1}+3^{-2}\right) \div\left(8^{0}+4^{-1 / 2}\right)$ without the use of a calculator.

Ways of Thinking about Solutions

Any number to the exponent zero equals one.
Taking the reciprocal of a number changes the sign of its exponent.
A number with an exponent of $\frac{1}{2}$ is equivalent to the square root of that number.

$$
\begin{aligned}
& \left(4^{-1}+3^{-2}\right) \div\left(8^{0}+4^{-1 / 2}\right) \\
& \left(\frac{1}{4}+\frac{1}{9}\right) \div(1+\sqrt{1 / 4}) \\
& \frac{13}{36} \div(1+1 / 2) \\
& \frac{13}{36} \div \frac{3}{2} \rightarrow \frac{13}{36_{18}} \times \frac{\pi^{1}}{3}=\frac{13}{54}
\end{aligned}
$$

EXPONENTIAL FUNCTIONS

EX A M P LE 7

Find the equation of the function represented in the following table. Do not use a graphing calculator.

x	0	2	4	6
y	4.7	14.1	42.3	126.9

Ways of Thinking about Solutions

How do I determine an equation from a table? What does it mean when the consecutive x-values increase by 2 instead of 1 ?
hows it have a common ratio?

$$
\begin{aligned}
& \frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}} \\
& \frac{14.1}{4.7} \stackrel{?}{=} \frac{42.3}{14.1} \\
& 3=3 \\
& \text { Since the } x \text {-values } \\
& \text { The common ratio } \\
& 3=3 \\
& \text { is } 3 \text { and } a \text { " }=4.7 \\
& \therefore y=4.7(3)^{x / 2}{ }_{H S}=2
\end{aligned}
$$

EX A M PL E 8

Joey has been collecting antique toy cars as an investment. The value, V, in dollars, of a toy car with respect to its age, t, in years, can be modelled using the function

$$
v=2(3)^{\frac{t}{4}}
$$

Which of the following statements is true?
A. The car's initial value was $\$ 2$ and it tripled in value every 4 years.
B. The car's initial value was $\$ 3$ and it doubled in value every 4 years.
C. The car's initial value was $\$ 4$ and it tripled in value every 2 years.
D. The car's initial value was $\$ 2$ and it quadrupled in value every 3 years.

EXPONENTIAL FUNCTIONS

Ways of Thinking about Solutions

Do I understand what the values 2,3 , and 4 in the equation represent?
The initial value is $\$ 2$, it triples every 4 yeans. So A is correct.

EXAM P LE 9

$\overline{3}^{3120}$ is equal to
A. 3-120
B. 3^{119}
C. 1120
D. 3117

Ways of Thinking about Solutions

Dividing exponential terms when bases are the same tells me to subtract their exponents.

$$
3^{120-1}=3^{119} ; 10 \text { B. is correct }
$$

EX A MP LE 1 O
Which curve best describes the growth of bacteria that doubles every three hours, where t is time in hours and Ais amount of bacteria per square millimetre?
A.

B.

C.

D.

EXPONENTIAL FUNCTIONS

Ways of Thinking about Solutions

How can I tell from the graph that the growth of bacteria doubles every three hours?
The initial amount ox all four graphs is 1 at $t=0$ \therefore at $t=3$, the amount must be 2 β is the correct answer

$$
\text { EX A MP LE } 11
$$

Two exponential functions, y_{1} and y_{2}, of the form $y=a b x$, are graphed:

How do the values of a compare in the two functions?
A. The value of a for y_{1} is greater than the value of a for y_{2}.
B. The value of a for y_{1} is less than the value of a for y_{2}.
C. The value of a for y_{1} is equal to the value of a for y_{2}.
D. For the function $\mathrm{y}_{1}, 0<\mathrm{a}<1$, and for the function $\mathrm{y}_{2}, \mathrm{a}>1$.

Ways of Thinking about Solutions

How can I tell from a graph what the a-values are?
The ' a ' values are the y-intercepts. Icon see that y_{2} has a higher a-value. So \underline{B} is the answer.

Exponential

EXPONENTIAL FUNCTIONS
 EX A M PL E 12

Solve this equation for x

$$
\left(\frac{1}{8}\right)^{x+2}=(4)^{-(x+1)}
$$

Ways of Thinking about Solutions

What is the first step when solving an exponential equation?

Since this equation has only one term on each sides, have to ry and strake the bases the same in order to equate

$$
\begin{aligned}
\left(\frac{1}{8}\right)^{x+2} & =4^{-(x+1)} \\
\left(2^{-3}\right)^{x+2} & =\left(2^{2}\right)^{-(x+1)} \\
2^{-3 x-6} & =2^{-2 x-2} \\
\text { So }-3 x-6 & =-2 x-2 \\
-x & =4 \\
x & =-4
\end{aligned}
$$

EXPONENTIAL FUNCTIONS

Fan IDDothece an mv nwin?

1. Evaluate the following without using a calculator. Show at least one intermediate step needed to obtain your final answer.
(a) $\left(-\frac{1}{2}\right)^{-3}$
(b) $(-64)^{\frac{2}{3}}$
(c) $\left(\frac{9}{1 \overline{6}}\right)^{-\frac{1}{2}}$
(d) $5^{0}+\left(\frac{1}{3}\right)^{-1}$
2. Without using the regression feature of the graphing calculator, determine the exponential function represented by the data in the following table.

x	-3	0	3	6
y	15	12	9.6	7.68

3. Try these questions from the text:

Page 121 (questions 38 and 39)
Page 123 (questions 50, 51, 52(a), (b), and (c))
Pages 129 and 130 (questions 9-12)
Pages 200 and 201 (questions 5-11)

Exponential Growth

 EXPONENTIAL EQUATIONS AND EXPRESSIONS
PAGES 156 TO 170 IN THE TEXT

nuthomes

I am expected to...

45 demonstrate an understanding of the role of real numbers in exponential and logarithmic expressions and equations
demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations

B12 apply real number exponents in expressions and equations
12 model real-world phenomena using exponential functions
(111 describe and translate between graphical, tabular, written, and symbolic representations of exponential and logarithmic relationships
124. solve exponential and logarithmic equations

125 solve problems involving exponential and logarithmic equations

What do - Hal= to know?

- Do I know how to use my graphing calculator to solve an exponential equation? [C24]
- Do I know how to solve an exponential equation algebraically? [C24, B1]
- When I read a problem that talks about "half-life" or "doubling period," what value should I use for the common ratio, and what is a horizontal stretch? [C2, C11, C25]
- Do I know when to use the formula: $A=P\left(1+\frac{r}{n}\right)^{n t}$, and do I know what it represents? [C2, C11, C25]
- Do I understand, when given a function $f(x)$, that $f(4)$ means "find y when $x=4$ "? [C24]
- Do I understand, when given a function $f(x)$ and asked to find x when $f(x)=4$, that this means "find the x-value when $y=4$ "? [C24]

[^3]
EXPONENTIAL EQUATIONS AND EXPRESSIONS

- Can I apply my laws of exponents (found on page 167 of the text)?
- Do I know how to evaluate expressions with fractional exponents? [A5, B12]

What MICHT it look like,
 on the provincial exam?
 EX A M PL E 1

The price of a particular product doubles every 35 years. If the price of the product was $\$ 16.40$ on January 1, 1996, the price of the product will be $\$ 36.50$ in the year
A. 2028
B. 2031
C. 2036
D. 2040

Ways of Thinking about Solutions

The answer can't be B because 2031 is 35 years after 1996 and therefore the amount should have doubled, to $\$ 32.80$. Since $\$ 36.50$ is slightly more than $\$ 32.80$, the correct answer must be C or D. Maybe I should check with the formula.

$$
\begin{aligned}
& y=16.40(2)^{t / 35} \\
& 36.50=16.40(2)^{t / 35} \\
& \frac{36.50}{16.40}=2^{t / 35} \\
& 2.23=2^{t / 35} \\
& \frac{t}{35}=\log _{2} 2.23 \\
& t=35 \frac{\log 2.23}{\log 2}
\end{aligned}
$$

$$
=40.5
$$

$\therefore 40$-pars later.
The best answer is C.

Exponential Growth

EXPONENTIAL EQUATIONS AND EXPRESSIONS

E X A M P L E 2

$\sqrt[3]{x^{2}}$ can be expressed as
A. $x^{\frac{3}{2}}$
B. $x^{\frac{2}{3}}$
C. $\frac{x^{2}}{3}$
D. $\left(x^{2}\right)^{3}$

Ways of Thinking about Solutions

How can I rewrite the given expression?

$$
\left(x^{2}\right)^{1 / 3}=x^{2 / 3}
$$

E X A M P L E 3

A general rule used by car dealerships is that the trade-in value of a car decreases by 30 per cent each year.
(a) Suppose you own a car whose trade-in value V is presently $\$ 3750$. Determine how much it will be worth one year from now, two years from now, three years from now.
Fill in the table of values:

t time in years	v value of the car
1	
2	
3	

EXPONENTIAL EQUATIONS AND EXPRESSIONS

Ways of Thinking about Solutions

What does it mean when a car depreciates by 30 per cent each year?

- 1 year from now, it will be worth 701 of 3750 , which is \$2625 - 2 years from now, it will be worth 70% of \$2625, which is \$1831.50.
- 3 years from now, it will be worth 78% of 1837.50 , which is $\$ 1286.25$.
(b) Without using the equation of the function, explain why an exponential function can be used to represent the data in part (a).

Ways of Thinking about Solutions

How can I describe why an exponential function is the best model?
Mach of the values would be obtained by multiplying the previous value by 0.7, which would then be a common ratio. exponential functions are those that represent numbers that have a common ratio.
(C) Write the particular equation expressing the trade-in value V of your car as a function of the number of years t from the present.

EXPONENTIAL EQUATIONS AND EXPRESSIONS

Ways of Thinking about Solutions

How do I determine the values of a and b for this particular equation?
an exponential function looks like $y=a b^{x}$
' a ' is the initial $\rightarrow \$ 3750$
' 6 ' is the common ratio $\rightarrow 70 \%$
' x ' is the time in years
' y ' is the new value after x-years
So, $y=3750(.70)^{x}$

EX A MP LE 4
Find the roots of the following equations:
A. $\sqrt[3]{9}=81^{3 x-5}$
B. $\left(-\frac{1}{4}\right)^{x-5}-5=3$

Ways of Thinking about Solutions

To solve an exponential equation, simplify the equation in order to obtain one term on each side. Then make the bases the same, if possible.
A.

$$
\begin{aligned}
\sqrt[3]{9} & =81^{3 x-5} \\
3^{2 / 3} & =\left(3^{4}\right)^{3 x-5} \\
3^{2 / 3} & =3^{12 x-20} \\
\frac{2}{3} & =12 x \cdot 20 \\
2 & =36 x-60 \\
-36 x & =-62 \\
x & =\frac{42}{36}=\frac{31}{18}
\end{aligned}
$$

A.
$9^{1 / 3}=9^{6 x \cdot 10}$
Or

$$
\frac{1}{3}=6 x-10
$$

$$
1=18 x-30
$$

$$
31=18 x
$$

$$
\frac{31}{18}=x
$$

B.

$$
\begin{aligned}
&\left(\frac{1}{4}\right)^{x-5}-5=3 \\
&\left(\frac{1}{4}\right)^{x-5}=8 \\
&\left(2^{-2}\right)^{x-5}=2^{3} \\
&-2 x+10=3 \\
&-2 x=-7 \\
& x=7 / 2
\end{aligned}
$$

EXPONENTIAL EQUATIONS AND EXPRESSIONS

EX A M PL E 5

At the start of 2004, Jonathan invested $\$ 500$ in a fund that doubles every seven years. In what year will he have $\$ 1,200$ in his account?

Ways of Thinking about Solutions

How do I model this situation using an exponential equation?

$$
\left.\begin{array}{l}
\text { initial amount: } \frac{1}{4} 500 \\
\text { common ratio } \rightarrow 2 \\
\text { new amount: } \$ 1200 \\
\text { double every 7 years... }
\end{array}\right\} \begin{aligned}
& 1200=500(2)^{x / 7} \\
& \frac{1200}{500}=2 \\
& 2.4=2^{x / 7}
\end{aligned}
$$

.. can't make the bases the same... change to logs

$$
\begin{array}{rlrl}
\log 2.4 & =\log 2^{x / 7} & & x \\
\log 2.4 & =\frac{x}{7} \log 2 & \text { or } 2.4 \\
\frac{7 \log 2.4}{\log 2} & =x & x & =\frac{7 \log 2.4}{\log 2} \\
& \text { so, } 8.8 & \text { years after } 2004, \text { or, in } 2012 .
\end{array}
$$

OR
using a graph...

$$
\left.\begin{array}{l}
y_{1}=500(2)^{x / 7} \\
y_{2}=1200
\end{array}\right\} \text { find intersection point... }
$$

Exponential Growth

EXPONENTIALEQUATIONS AND EXPRESSIONS

Gan I DO these on mv own?

1. Which of the following is equal to $a^{\frac{4}{5}}$?
A. $\sqrt[5]{a^{4}}$
B. $\left(a^{\frac{1}{4}}\right)^{5}$
C. $\left(a^{4}\right)^{5}$
D. $\frac{1}{a^{\frac{5}{4}}}$
2. Given $8(2)^{x}=32$ Which of the following statements is false?
A. $16^{x}=32$
B. $2^{x+3}=32$
C. $2^{x}=4$
D. $x=\log _{2} 4$
3. A certain bacterial culture initially has 200 bacteria/ cm^{2} and the number doubles every 20 minutes.
(a) Find the equation representing this situation.
(b)How many bacteria/cm² would there be after four hours?
4. Try these questions from the text:

Pages 158 to 161 (questions 8-19)
Pages 164 to 167 (questions 1-19, 21(a) and (b))
Pages 202 and 203 (questions 18-21 and 25-29)

Exponential Growth LOGARITHMS

PAGES 172 TO 182 IN THE TEXT

nithomes

I am expected to...

demonstrate an understanding of the role of real numbers in exponential and logarithmic expressions and equations
demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations
apply real number exponents in expressions and equations
demonstrate an understanding of the properties of logarithms and apply them
describe and translate between graphical, tabular, written, and symbolic representations of exponential and logarithmic relationships

Q19 demonstrate an understanding, algebraically and graphically, that the inverse of an exponential function is a logarithmic function
(124) solve exponential and logarithmic equations

What do LHAVE to know?

- How are the graphs of $y=b^{x}$ and $y=\log _{b} x$ related? [C19]
- When I look at a logarithmic curve in the form of $y=\log _{b} x$, do I know that $(1,0)$ is the x-intercept? Do I know that $x=0$ is the vertical asymptote? [C11]
- Do I know how to change an equation from exponential form to logarithmic (often called "log") form? [C19]
- Can I convert an equation from log form to exponential form and vice versa? [A5, B13]

Exponential Growth

LOGARITHMS

- Do I know how to solve exponential equations using logarithms? [A5, B12]
- Do I know how to use the laws of logarithms to express several log terms as a single log term? [B13]
- Do I know how to solve logarithmic equations? [B13, C24]
- Do I understand that logs are used when I want to solve for a variable that is in the exponent when I cant make the bases the same? [C24, C25]

What MIGHT it Inn Ike n on the provincial exam?

EX A M P LE 1

Marla is trying to determine the value for x in the equation $7^{x}=22$.
Which one of the following will she use to obtain the value of x ?
A. $x=\log \left(\frac{22}{7}\right)$
B. $\log _{7} x=\log 22$
C. $\mathrm{x}=\frac{\log 22}{\log 7}$
D. $\mathrm{x}=\frac{\log 7}{\log 22}$

Ways of Thinking about Solutions

When the bases are different, how do I change the exponential equation to a log equation?

$$
\begin{aligned}
& 7^{x}=22 \\
& x=\log _{1} 22-\text { how can \& do this } \\
& x=\operatorname{los} 22 \quad \text { on my calculator? }
\end{aligned}
$$

$$
x=\frac{\log 22}{\log 7}
$$

LOGARITHMS
 EX A M PL E 2

$2 \log _{3} 9+\log _{3} 7-\log _{3} 3$ expressed as a single logarithm is
A. $2 \log _{3} 13$
B. $2 \log _{3} 21$
C. $\quad \log _{3} 42$
D. $\log _{3} 189$

Ways of Thinking about Solutions

To express as a single log, I have to use the laws of logarithms. Do I know how to do this?

$$
\begin{aligned}
& 2 \log _{3} 9=\log _{3} 9^{2} \ldots \\
& \text { multiply the } 9^{2} \text { and the } 7 \text {, then divide by } 3 \\
& \text { now I have } \log _{3}\left(\frac{q^{2} \cdot 7}{3}\right) \rightarrow \log _{3}(189) \\
& \text { so, D. is correct. }
\end{aligned}
$$

EX A M P LE 3

Given $\log _{3} x=-1$, the value of x is
A. $\quad \mathrm{x}=\frac{1}{2}$
B. $x=\frac{1}{3}$
C. $x=-1$
D. $x=-3$

Ways of Thinking about Solutions

To solve this log equation, change it to an exponential equation.

$$
\begin{aligned}
& 3^{-1}=x \\
& \therefore x=1 / 3
\end{aligned} \quad B \text { is the correct answer }
$$

Exponential Growth

LOGARITHMS

EX A MP LE 4

A certain bacterial culture initially has 200 bacteria/ cm^{2} and the number doubles every 20 minutes. How long would it take until there are 1000 bacteria/cm²? Express your answer accurate to two decimal places.

Ways of Thinking about Solutions

How do I model this situation using an exponential equation, and how do I solve this equation?

$$
\begin{aligned}
& \text { initivalue }_{\pi} \text { daubers } \\
& 1000=\frac{\lambda}{\lambda}\left(200(2) \frac{t}{20} \rightarrow\right. \text { doubling period } \\
& \frac{1000}{200}=2^{t / 20} \\
& 5=2^{t / 20} \text { The exponent has a } \\
& \frac{t}{20}=\log _{2} 5 \text { variable, therefore change } \\
& 20 \\
& t=\frac{20 \log 5}{\log 2} \\
& \text { to a log equation } \\
& =46.44 \text { Lt will take } 46.44 \text { minutes }
\end{aligned}
$$

EX A M PL E 5
Solve the following equation for x. Express your answer accurate to two decimal places.

$$
\log _{5} 2 x-\log _{5} 3=\log _{5} 4
$$

Exponential

Ways of Thinking about Solutions

The first step in solving a log equation is to simplify both sides of the equation in order to obtain one term on each side of the equation.

$$
\begin{gathered}
\log _{5} 2 x-\log _{5} 3=\log _{5} 4 \\
\log _{5} \frac{2 x}{3}=\log _{5} 4
\end{gathered}
$$

$$
\begin{aligned}
\frac{2 x}{3} & =4 \\
2 x & =12 \\
x & =6
\end{aligned}
$$

Fan DO these On mV OWI?

1. The expression $3 \log _{2}(3)+\log _{2}(5)-\log _{2}(9)$ is equivalent to
A. $3 \log _{2}\left(\frac{15}{9}\right)$
B. $3 \log _{2}(-1)$
C. $3 \log _{2}(5)$
D. $\log _{2}(15)$
2. If $\log _{x} 9=\frac{1}{2}$, then x is equal to
A. 3
B. 4.5
C. 18
D. 81
3. Solve for x :
(a) $x=3 \log _{3} 12$
(b) $\log _{x} 34=0.5$
(c) $\log (x)+\log (x-1)=2 \log (x)$
4. Try these questions from the text:

Pages 174 and 175 (questions 11-15)
Pages 177 and 178 (questions 1-6)
Pages 180 to 182 (questions 9-14 and 17)
Pages 203 and 204 (questions 33-39)

Exponential Growth

 TRANSFORMATIONSPAGES 143 TO 155 IN THE TEXT
In addition to Mathematics 12 outcomes, you are also responsible for:

Oitanmas

I am expected to...

describe and interpret domains and ranges using set notation
C2 model real-world phenomena using exponential functions
sketch tables and graphs from descriptions and collected data
C11 describe and translate between graphical, tabular, written, and symbolic representations of exponential and logarithmic relationships

C24 solve exponential and logarithmic equations

033 analyse and describe the characteristics of exponential and logarithmic functions
C34 demonstrate an understanding of how the parameter changes affect the graphs of exponential functions

C35 [ADV] write exponential functions in transformational form and as mapping rules to visualize and sketch graphs

What inolbivitn knnw?

- Can I describe the transformations on the function $y=a b \times$ in words and in a mapping rule. [C33, C34, C35Adv]
- Can I explain how each of the transformations is identifiable in the function $A(y-C)=\operatorname{base}^{B}(x-D)$? [C33, C34, C35adv]
- Can I write an exponential function in transformational form, given the transformations in words, in a mapping rule, or from a graph? [C34, C35Adv]
- Can I rewrite an exponential function into transformational form? [C11, C35ADv]

[^4]
Exponential Growth TRANSFORMATIONS

- Can I sketch graphs of exponential functions using transformations? [C3, C11, C35ADv]
- Can I complete a table of values using a mapping rule? [C11]
- Can I sketch a graph by determining how the transformations affect the focal point, $(0,1)$, and then using the patterns to the right and left of the focal point? [C3, C33, C34, C35adv]
- Do I understand how the range of the function is related to the asymptote? [A7, C33]
- Can I find the equation of the horizontal asymptote and do I understand what it represents in the context of a word problem? [C3, C33]
- Do I understand when a function is either increasing and/or decreasing? [C33]
- Can I use a graph to solve exponential equations? [C11, C33, C24]

(Fanlldotheramomvawn?

1. The function $f(x)=12(2)^{2(x+1)}+3$ has a horizontal asymptote at
A. $y=3$
B. $y=-3$
C. $y=12$
D. $y=-1$
2. For the exponential function $y=-4(3)^{x+2}-1$, do the following:
(a) Write the equation in transformational form.
(b) Find the coordinates of the focal point.
(c) State the equation of the horizontal asymptote.
(d) State the domain and range.
3. Try these questions from the text:

Pages 143 to 162

Exponential Growth SOLVING EXPONENTIAL EQUATIONS AND SIMPLIFYING EXPONENTIAL EXPRESSIONS

PAGES 161 TO 171 IN THE TEXT

Note: Although there are no new outcomes to be achieved, there is a difference in the types of questions you may be asked, and in the sophistication of your responses.

Ontanmas

I am expected to...

demonstrate an understanding of the role of real numbers in exponential and logarithmic expressions and equations
demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations
apply real number exponents in expressions and equations
model real-world phenomena using exponential functions
describe and translate between graphical, tabular, written, and symbolic representations of exponential and logarithmic relationships
solve exponential and logarithmic equations
625
solve problems involving exponential and logarithmic equations

- Do I know how to solve a system of equations when the x - and y-variables are in the exponent? [C24]
- Can I recognize and solve exponential equations that are in the form of a quadratic equation (e.g., $(4 x)^{2}-17(4 x)+16=0$)? [C24]

Exponential Growth SOLVING EXPONENTIAL EQUATIONS AND SIMPLIFYING EXPONENTIAL EXPRESSIONS

- Can I factor a term in the form of b^{x+y} to get two factors $b^{\prime}\left(b^{x}\right)$? [A5, B12]
- Can I simplify, factor, prove, and evaluate exponential expressions and equations (as required for the questions on page 171 in the text)? [A5, B12]
- Can I solve more complex logarithmic equations (like those on page 175 in the text)?

Pan DOO thesfan mI nwn?

Try these questions from the text:
Page 167 (question 21 parts c to g)
Page 171 (questions 27-36)
Page 202 (questions 22 and 23)

LOGARITHMS

PAGES 175 TO 188 IN THE TEXT

Note: Although there are no new outcomes to be achieved, there is a difference in the types of questions you may be asked, and in the sophistication of your responses.

Ontanmas

I am expected to...
demonstrate an understanding of the role of real numbers in exponential and logarithmic expressions and equations
demonstrate an understanding of the relationships that exist between arithmetic operations and the operations used when solving equations
apply real number exponents in expressions and equations
demonstrate an understanding of the properties of logarithms and apply them
describe and translate between graphical, tabular, written, and symbolic representations of exponential and logarithmic relationships
demonstrate an understanding, algebraically and graphically, that the inverse of an exponential function is a logarithmic function
solve exponential and logarithmic equations
solve problems involving exponential and logarithmic equations

Exponential Growth

LOGARITHMS

What do H HAVE to know?

- Can I apply the logarithm laws when simplifying expressions and solving equations?
[A5, B12, B13, C24]
- Do I know that, when solving an exponential equation and the bases cannot be made the same, logs are required to find the value for the variable in the exponent? [C24]
- Can I solve problems that involve equations that are logarithmic, or equations that require logarithms to solve? [C24, C25]

Pan DOA these on mV own?

Try these questions from the text:
Page 204 (questions 40-45)
Page 184 to 188 (questions 29-43)

Circle Geometry THINGS TO REMEMBER

Circle Properties

Advanced Math 12	
Advanced Math 12	Advanced Math 12
Advanced Math 12	${ }^{\prime} C$ " is the centre of the circle.

Circle Geometry

CHORD PROPERTIES

PAGES 206 TO 212 IN THE TEXT

Rithommes

I am expected to...

D1 develop and apply formulas for distance and midpoint

54 apply properties of circles
=5 apply inductive reasoning to make conjectures in geometric situations
-7 investigate, make, and prove conjectures associated with chord properties of circles

512 demonstrate an understanding of the concept of converse

What in I Hisk to know?

- Do I know that when I explore properties and make conclusions, I am making a conjecture (using inductive reasoning)? [E5, E7]
- Do I know that the diameter of the circle is its longest chord? [E7]
- Do I know how to locate the diameter of a circle and the center of a circle? [E4, E7]
- Can I show that when I draw the perpendicular bisectors of two chords in a circle, they will intersect at the centre of the circle? [E7]
- How do I know that equal chords are the same distance from the centre of a circle? [E7]
- Do I know how to write the converse of "if P, then Q " ? [E12]
- When a statement and its converse are true, can I write them using "iff"(if and only if)? [E12]
- Do I know that if a statement is true, its converse is not necessarily true? [E12]
- Can I solve problems using properties of chords? [E4]
- Can I use distance and midpoint formulas in proofs? [D1]

CHORD PROPERTIES

What M chit look Ike

 on the provincial exam?E X A M P L E 1

In which diagram is there enough evidence to conclude that the line segment AB passes through the centre of the circle?
A.

B.

C.

D.

Ways of Thinking about Solutions

What chord property must I use to solve the problem?

When a line is The perpendicular bisector of a chard, then it must go through The centre of a circle \therefore D is the correct answer

CHORD PROPERTIES

EX A M P LE 2

Given two chords, $\overline{A B}$ and $\overline{C D}$, with points $A(-2,-4), B(5,-5), C(-1,3)$, and $D(6,2)$ on a circle with centre (2,-1):
(a) Show algebraically that the distance from the midpoint of chord $\overline{A B}$ to the centre of the circle is the same as the distance from the midpoint of chord $\overline{C D}$ to the centre of the circle.

Ways of Thinking about Solutions

Do I know the midpoint and distance formulas?
For midpoint: midpt of $\overline{A B}=\left(\frac{-2+5}{2}, \frac{-4-5}{2}\right)=(1.5,-4.5)$ midst of $\overline{C D}=\left(\frac{-1+6}{2}, \frac{3+2}{2}\right)=(2.5,2.5)$
Distance from midpoint of $\overline{A B}$ to the centre: $d=\sqrt{(2-1.5)^{2}+(-1+4.5)^{2}}=\sqrt{12.5}$

Distance from midpoint of $\overline{C D}$ to the centre: equal
$d=\sqrt{(2-2.5)^{2}+(-1-2.5)^{2}}=\sqrt{12.5}$

CHORD PROPERTIES
(b) (i) Complete this theorem: If two chords on a circle are equidistant from the centre of the circle, then ...

Ways of Thinking about Solutions

Can I remember the properties of chords?

the two chords are congruent
(ii) State the converse of the theorem in part (i).

If two chords on a circle are congruent then they are equidistant from the centre.

EX A M PL E 3

For the following diagram, explain how you would find the centre of the circle, given the coordinates of A, B, C, and D.

Ways of Thinking about Solutions

What properties of chords should I use to find the centre of a circle?
A would determine the midpoints of chord $\overline{A B}$ and $\overline{C D}$. Find the 1 bisector of each chord. The point of intersection of the $2 \perp$ bisectors is the centre of the circle.

CHORD PROPERTIES

Or

Fold A onto B, unfold and draw a line on the crease. Fold C onto D, unfold and draw a line on the crease. the intersection point of these 2 lines is the centre of the circle.

Fan I D.O these on mv own?

From the text, try these questions:
Page 209 (question 10)
Page 295 (question 4)

Crde Geometry

 COORDINATE GEOMETRYPAGES 222 TO 231 IN THE TEXT

DIItAOMAS

I am expected to...
(11 develop and apply formulas for distance and midpoint
54 apply properties of circles
=5 apply inductive reasoning to make conjectures in geometric situations
$=7$ investigate, make, and prove conjectures associated with chord properties of circles

- Can I write proofs involving the manipulation of coordinates? [E4, E7]
- Can I solve problems involving slope, distance, and midpoint by using coordinates? [E7, D1]
- Can I use the property of equal slopes to prove that two lines (two sides of a figure) are parallel? [E7, E11]
- Can I use the property of negative reciprocal to prove that two lines (two sides of a figure) are perpendicular? [E7]
- Do I know that the equation of a circle with radius r and its centre at the origin is $x^{2}+y^{2}=r^{2}$? [E4, E7]

COORDINATE GEOMETRY

What MICHT it look like...

on the provincial exam?

EX A M P LE 1
Given the points A and B as shown, which expression will calculate length $A B$?

A. $\sqrt{(1-6)^{2}+(5+2)^{2}}$
B. $\sqrt{(1+5)^{2}+(6-2)^{2}}$
C. $\sqrt{(1-5)^{2}+(6+2)^{2}}$
D. $\sqrt{(6+1)^{2}+(-2+5)^{2}}$

Ways of Thinking about Solutions

Should I use the distance formula?

$$
\begin{aligned}
D & =\sqrt{(1-5)^{2}+(6-(-2))^{2}} \\
& =\sqrt{(1-5)^{2}+(6+2)^{2}}
\end{aligned}
$$

$\therefore c$ is correct

COORDINATE GEOMETRY

EXAMPLE 2
What is the distance in centimetres between the chord and the centre of the circle if the radius of the circle is 7 cm ?

B. $2 \sqrt{6}$
C. $\sqrt{51}$
D. $\sqrt{74}$

Ways of Thinking about Solutions

How can I use the given information (radius and chord length) to solve this?

B is the correct answer

COORD\|NATE GEOMETRY
 EXAMPLE 3

A, B, C, and D are four points on a circle:

(a) Prove that $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are the same length.

Ways of Thinking about Solutions

Finding the length means using the distance formula.

$$
\left.\begin{array}{l}
A B=\sqrt{(-3-4)^{2}+(-5.2)^{2}}=\sqrt{49+49}=\sqrt{98} \\
C D=\sqrt{(-2-5)^{2}+(2+5)^{2}}=\sqrt{49+49}=\sqrt{98}
\end{array}\right] \quad A B=C D .
$$

(b) Do the chords bisect each other? Justify your answer.

Ways of Thinking about Solutions

What does "bisect" signify?

$$
\begin{aligned}
& \text { Midpoint } \left.\overline{A B}=\left(\frac{-3+4}{2}, \frac{-5+2}{2}\right)=\left(1 / 2,-\frac{3}{2}\right)\right] \begin{array}{l}
\text { not the } \\
\text { same }
\end{array} \\
& \text { Midpoint } \left.\overline{C D}=\left(\frac{-2+5}{2}, \frac{2-5}{2}\right)=\left(\frac{3}{2},-\frac{3}{2}\right)\right]
\end{aligned}
$$

$\therefore \overline{A B}$ and $\overline{C O}$ do not bisect each other.

COORDINATE GEOMETRY

EXAM M LE $\quad 4$
Line L_{1}, with the equation $y=-\frac{1}{3}-x--\frac{8}{3}$, intersects the chord $\overline{\mathrm{AB}}$, with points $A(3,-7)$ and $B(5,-1)$.

Prove that L_{1} is perpendicular to $\overline{\mathrm{AB}}$.

Ways of Thinking about Solutions

How can I use slopes to determine that lines are perpendicular?

$$
\begin{aligned}
& \text { Slope of } L_{1}=-1 / 3 \\
& \text { Slope of } \overline{A B}=\frac{-7-(-1)}{3-5}=\frac{-6}{-2}=3 \therefore L_{1} \perp \overline{A B}
\end{aligned}
$$

(Fan I D.O these ni mv non?

From the text, try the following questions:
Page 231 (questions 31, 32, 34, and 35)
Page 295 (questions 6 to 9)

Grde Geometry
 CHORD PROPERTIES AND PROOFS

PAGES 206 TO 231 IN THE TEXT
In addition to Mathematics 12 outcomes，you are also responsible for：

Ontanmas

I am expected to．．．
E11
write proofs using various axiomatic systems and assess the validity of deductive arguments

What in I HAMEtn know？

－Do I know that deductive proof involves drawing valid conclusion from establish facts．［E11］
－Do I know that SSS，SAS，ASA，SAA，and HL are sufficient conditions to prove that two triangles are congruent？［E11］
－Can I read a proof written by someone else and determine if each of the steps in the proof are correct？［E11］
－Do I know that CPCTC stands for＂corresponding parts of congruent triangles are congruent＂？［E11］

Circle Geometry

 CHORD PROPERTIES AND PROOFS
What Mchirit.jnok like
 on the provincial exam?

EX A M P LE 1

Which of the following pairs of triangles have sufficient information given to be proven congruent?

B.

C.

D.

Ways of Thinking about Solutions

Which congruence theorem can I use to prove the congruency of triangles?
A) - $A A A$ is not a congruence theorem
B) - right triangles and one side congruent : not enough information
c) - right triangle, hypothenure and one leg congruent - HL Theorem
D) - ISA - not a congruence ltearem
$\therefore C$ is the correct answer.

Circle Geometry

CHORD PROPERTIES AND PROOFS

EX A M P LE 2

Given that D is the midpoint of AB and $\angle A \cong \angle B$, you want to prove that triangles $A C D$ and $B C D$ are congruent.

Here are the first three statements of the proof:

$$
\begin{aligned}
& C D=C D \text { (common side) } \\
& A D=B D \text { (definition of midpoint) } \\
& \angle A \cong \angle B \text { (given) }
\end{aligned}
$$

Which of the following would be the next statement to the proof?
A. $A D=C D$
B. $A C=B C$
C. $\angle A \cong \angle B$
D. $A D=\frac{1}{2} A B$

Ways of Thinking about Solutions

To prove the two triangles congruent, what am I missing?

Circle Geometry

 CHORD PROPERTIES AND PROOFS
EX A M P LE 3

Given: and $\angle E D F \cong \angle F E D$ and $F B=F C$, prove that $D B=E C$.

Ways of Thinking about Solutions

$\overline{D B}$ and $\overline{E C}$ belong to triangles $D B C$ and $E C B$, respectively.
Can I prove that these triangles are congruent?

```
            \angleEDF\cong}\cong\angleFE
        \triangleDEF is an isosceles)}
            DF=FE
            FC=FB
            DC=BE
            \angleDCB\cong\angleEBC
            BC: BC.
            \triangleDCB\cong}\cong\triangleEB
\thereforeDB=EC
```

Seen
Ley n of isosceles Δ
isosceles \triangle
Seven
segment addition
Leosceles $\triangle, F C: F B$
Common side
SAB
CPCTC

Gide Geometry CHORD PROPERTIES AND PROOFS

01

$\overline{D B}$ and $\overline{E C}$ belong to triangles $D F B$ and $E F C$, respectively.
Can I prove that these triangles are congruent?

```
    \angleEDF\cong}\cong\angleFE
    \triangleDEF is an isorceles }
    DF=EF
    \angleDFB\cong\angleEFC
    FB=FC
\therefore\triangleDFB\cong\triangleEFC.
\thereforeDB=EC
(Sven)
(kif \(n\) of isosceles \(\triangle\) ) (Hosceles \(\Delta\) )
( \(x\) theorem)
(Alvin)
(IAS.)
(CPCTC)
```


Pan Dothese on my own?

Try these questions from the text:

Page 217 (questions 25 and 26)
Page 219 (question 29)
Page 220 (question 32)
$\frac{\underset{y y}{x}}{\text { Circle Geometry }}$
PAGES 232 TO 243 IN THE TEXT
Ontanmas
I am expected to...
apply properties of circles
E5 apply inductive reasoning to make conjectures in geometric situations
E8 [Aov] investigate, make, and prove conjectures associated with angle relationships in circles

E11 write proofs using various axiomatic systems and assess the validity of deductive arguments

What do L HAVE to knnw?

- Do I know what a central angle and an inscribed angle are and how they are related? [E4, E8 adv]
- Do I know that an arc may be measured in degrees, like an angle? [E4]
- Do I know that the measure of an arc in a circle is equivalent to the measure of the central angle that it subtends? [E4, E8Adv]
- Do I know that arcs and chords can also subtend inscribed angles?
- Do I know that all inscribed angles subtended by the same arc are congruent? [E5, E8 adv]
- Do I know that if a chord is a diameter then it subtends an inscribed angle, whose measure is 90° ? [E5, E8 Adv]
- Do I know that a cyclic quadrilateral is a quadrilateral inscribed in a circle, and that its opposite angles are supplementary? [E5, E8 Aov]

Circle Geometry

What Merit look like...

on the provincial exam?

EXAMPLE 1

Given $\angle \mathrm{FBC}=50^{\circ}$, what is the measure of $\angle \mathrm{E}$?

A. 30°
B. 40°
C. 50°
D. 60°

Ways of Thinking about Solutions

Since $\angle \mathrm{E}$ and the central angle are both subtended by the same arc, can the information help me find the measure of the central angle?

Since $\angle F B C$ is equal to $50^{\circ}, \angle C F B$ is also equal to 50° (isovales) triangles) Therefore $\angle C=80^{\circ}$. $\angle E$ is ax inscribed angle subtented by the same arc as the central angle " C ", Therefore $\angle E$ measures $1 / 2$ of 80° B is the correct answer

ANGLES IN A CIRCLE

EX A M PL E 2

For this diagram, which of the following statements is correct?

A. $\angle A O C \cong \angle A B C$
B. $m \angle A O C+m \angle A B C=180^{\circ}$
C. $\angle A E C \cong \angle A D C$
D. $\angle O A B \cong \angle O C B$

Ways of Thinking about Solutions

Examine the choices to see if I can apply any of the circle properties.
C must be correct because these two angles are bath subtented by $\overparen{A C}$, and they are bach inscribed angles.

EX A M P LE 3

Given that C is the centre of the circle, which one of the following statements is true?

Circle Geometry

 ANGLES IN A CIRCLEA. $\angle C A E \cong \angle B D E$
B. $\angle A B D \cong \angle A E D$
C. $\overline{A E} \cong \overline{B D}$
D. $\overline{A B} \cong \overline{D E}$

Ways of Thinking about Solutions

Examine the choices to see if I can apply any of the circle properties.
$\angle A B D$ and $\angle A E D$ are beth 90° because they ar inscribed angles subtended by seme-curcles, so they must be congruent. B is the correct answer.

Pan do these on mv own?

Try these questions from the text:
Page 237 (questions 16 and 17)
Pages 238 and 239 (question 18)
Page 241 (question 33)
Pages 242 and 243 (questions $35-46$)

Circle Geometry EQUATIONS OF CIRCLES AND ELLIPSES
PAGES 252 TO 267 IN THE TEXT
Oritenmes I am expected to...

E3 [abu]
write the equations of circles and ellipses in transformational form and as mapping rules to visualize and sketch graphs

E13 Aadv]
analyse and translate between symbolic, graphical, and written representations of circles and ellipses

E14 Ifave
translate between different forms of equations of circles and ellipses
E15 1 adv$]$
solve problems involving the equations and characteristics of circles and ellipses

E16 Tadv]
demonstrate the transformational relationship between the circle and the ellipse

What in LHAVE to knnw?

- Can I explain why a circle is not a function? [E3Adv]
- Given the equation of a circle or an ellipse in general form, can I rewrite it in transformational or standard form? [E14ADv]
- Given the equation of an ellipse or circle in transformational or standard form, can I describe the transformations of $x^{2}+y^{2}=1$ in words and as mapping rules? [E3adv]
- Given the equation or mapping rule of a circle or an ellipse, can I sketch its graph? [E3adv]

Circle Geometry EQUATIONS OF CIRCLES AND ELLIPSES

- Can I determine the equation of a circle or an ellipse given its graph or its mapping rule? [E3adv, E13adv]
- Can I rewrite the equation of a circle or an ellipse from transformational or standard form to general form? [E14adv]
- Do I know how to identify when an equation represents a circle or an ellipse? [E16adv]
- Can I determine the major and minor axes of an ellipse? [E16adv, E15adv]
- Can I solve problems involving circles and ellipses? [E15adv]

What M CHIT it look Ike r on the provincial exam?

EX A M PL E 1

Determine the centre and radius of the circle defined by this equation:
$x^{2}+y^{2}-4 x+6 y-12=0$

Ways of Thinking about Solutions

To determine the centre and the radius, I need to rewrite the equation in standard or transformational form.

$$
\begin{gathered}
\begin{array}{c}
x^{2}-4 x+y^{2}+6 y=12 \\
x^{2}-4 x+4+y^{2}+6 y+9=12+4+9 \\
(x-2)^{2}+(y+3)^{2}=25
\end{array} \\
\text { So, the centre is }(2,3) \text { and the radius is } 5 \\
\text { hit. }
\end{gathered}
$$

Cradle Geometry EQUATIONS OF CIRCLES AND ELLIPSES

EX A M PL E 2

In an ellipse, $A(-7,2)$ and $B(3,2)$ are the endpoints of the major axis and $C(-2,-1)$ and $D(-2,5)$ are the endpoints of the minor axis. Determine the equation of the ellipse in general form.

Ways of Thinking about Solutions

Am I able to determine the lengths of the minor and major axes and the coordinates of the centre of the ellipse by examining the given coordinates?

$$
\begin{aligned}
& \text { I can tell from the coordinates that } \\
& \text { the major axis } \overline{A B} \text { is horizontal and } 10 \text { units } \\
& \text { long. The vertical axis is } 6 \text { units long. The } \\
& \text { centre would be at the midpoint of } \overline{A B} \text { or } \overline{C D} \text {, } \\
& (-2,2) \text {. } \\
& \text { So, the equation of the ellipse: }\left[\frac{1}{5}(x+2)\right]^{2}+\left[\frac{1}{3}(y-2)\right]^{2}=1 \\
& \text { Now, translate to general form: } \frac{1}{25}\left(x^{2}+4 x+4\right)+\frac{1}{9}\left(y^{2}-4 y+4\right)=1 \\
& \text { Multiply all terms by } \left.\angle C D 225:\left(\frac{1}{25}\left(x^{2}+4 x+4\right)\right)^{1225}+\frac{1}{9}\left(y^{2}-4 y+4\right)\right)^{125}=(1 \times 225 \\
& 9 x^{2}+36 x+36+25 y^{2}-100 y+100=225 \rightarrow 9 x^{2}+25 y^{2}+36 x-100 y-89=0
\end{aligned}
$$

Gide Geometry EQUATIONS OF CIRCLES AND ELLIPSES

EXAMPLE 3

Which of the following equations represents this graph?

A. $\left[\begin{array}{l}(x+2) \\ -y^{--}\end{array}\right]+\left[\begin{array}{c}(y-1) \\ -5^{--}\end{array}\right]=1$
B. $\left[\frac{(x-2)}{5}\right]^{-2}+\left[\frac{(y+1)}{2}\right]=1$
C. $\left[\frac{(x+2)}{-10}\right]+\left[\frac{(y-1)}{4}-\overline{-1}\right]=1$
D. $\left[\frac{(x-2)}{25}\right]^{2}+\left[\frac{(y+1)}{4}\right]=1$

Ways of Thinking about Solutions

First I should determine the coordinates of the centre and the length of the minor and major axes.
The centre has to the $(2,-1)$, so look for $(x-2)$ and $(y+1)$ dither ' B ar could the correct. The major axis is 10 units, therefore B is correct.

EX A M PL E 4

Write $25 x^{2}+4 y^{2}+150 x-16 y+141=0$ in transformational form and sketch its graph.

EQUATIONS OF AND ELLIPSES

Ways of Thinking about Solutions

How do I rewrite this equation in transformational form?

$$
\begin{aligned}
& 25 x^{2}+150 x+4 y^{2}-16 y=-141 \\
& 25\left(x^{2}+6 x+4\left(y^{2}-4 y+\right.\right. \\
& 25\left(x^{2}+6 x+9\right)+4\left(y^{2}-4 y+4\right)=-141+225+16 \\
& \frac{25(x+3)^{2}}{100}+\frac{4(y-2)^{2}}{100}=\frac{100}{100} \\
& \frac{(x+3)^{2}}{4}+(y-2)^{2}=1 \\
& \frac{25}{2}=1 \\
& {\left[\frac{1}{2}(x+3)\right]^{2}+\left[\frac{1}{5}(y-2)\right]^{2}=1 \text { or }\left(\frac{x+3}{2}\right)^{2}+\left(\frac{y-2}{5}\right)^{2}=1}
\end{aligned}
$$

EX A M PL E $\mathbf{5}$

State the domain and range for $9(x-1)^{2}+16(y+2)^{2}=144$

Circle Geometry
 EQUATIONS OF CIRCLES

Ways of Thinking about Solutions

To state the domain and range I should rewrite the equation in transformational form.

$$
\begin{aligned}
& \frac{9}{144}(x-1)^{2}+\frac{16}{144}(y+2)^{2}=1 \\
& \frac{1}{16}(x-1)^{2}+\frac{1}{9}(y+2)^{2}=1 \\
& {\left[\frac{1}{4}(x-1)\right]^{2}+\left[\frac{1}{3}(y+2)\right]^{2}=1} \\
& \text { H. s. of } 4 \text { Centre at }(1,-2)
\end{aligned}
$$

Note: A quick sketch usuld be beneficial

$$
\text { Domain: } 1-4 \leq x \leq 1+4, x \in R \quad \therefore \text { Domain }-3 \leq x \leq 5, x \in R
$$

$$
\text { Range: }-2-3 \leq y \leq-2+3, y \in R \quad \text { Range }-5 \leq y \leq 1, y \in R
$$

Fan I D.Othesenn mvonvir

Try these questions from the text:
Page 255 to 257 (questions 7-20)
Pages 259 and 260 (questions 23-30)
Page 261 (question 35 and 36)
Pages 263 and 264 (questions 37-41)
Pages 265 and 267 (questions 42-51)
Pages 297 and 298 (questions 22-28)

Probability

 EXPERIMENTAL AND

 EXPERIMENTAL AND THEORETICAL PROBABILITIES

 THEORETICAL PROBABILITIES}

PAGES 300 TO 306 IN THE TEXT

Diltanmas

I am expected to...

C2
demonstrate an understanding that determining probability requires the quantifying of outcomes

What ion HAVE to know?

- Do I understand that probability is the ratio of the number of ways of achieving success to the total number of possible outcomes? [G2]
- Do I understand that the complement of an event X is "event X not occurring," symbolized as $\overline{\mathrm{X}}$? [G2]
- Do I understand the difference between experimental probability and theoretical probability? [G2]

What Mentit Innk like
 on the provincial exam?

E X A M P L E 1
Two students, Peter and Ken, performed a simulation that involved tossing three coins. They recorded the number of heads and tails from 10 trials. According to the results, shown in the table below, what is the experimental probability of getting three heads on a single trial?

Trial 1	HHT
Trial 2	HHT
Trial 3	HTT
Trial 4	HHH
Trial 5	HTT
Trial 6	THH
Trial 7	HTH
Trial 8	TTT
Trial 9	HHH
Trial 10	TTT

EXPERIMENTAL AND THEORETICAL PROBAB\|LITIES

Ways of Thinking about Solutions

Experimental probability is determined based on observed results.
There were $10^{\text {Ttrials, } 2}$ of which turned up heads -probability is the ratio number of successes
total number of outcomes
so $P(3 H)=\frac{2}{10}=\frac{1}{5}$

(Fan D DOthase On mV OWIT?

Try these questions from the text:
Pages 301 and 302 (questions 3, 4, and 11)

Probability
 COUNTING AND PROBABILITY

PAGES 307 TO 319 IN THE TEXT

nithomes

I am expected to...

(12 demonstrate an understanding that determining probability requires the quantifying of outcomes

C8 demonstrate an understanding of the fundamental counting principle and apply it to calculate probabilities of dependent and independent events

What in HAVE to know?

- Do I know that the "sample space" is the total number of possible outcomes? [G2]
- Do I know that given $P(A)$ and $P(B)$, the Fundamental Counting Principle states that $P(A$ and $B)=P(A) \times P(B)$, and that this is often referred to as the Multiplication Principle?
- Do I understand the difference between $P(A$ and $B)$ and $P(A$ or $B)$? [G3]
- Do I understand when events are mutually exclusive? [G3]
- Do I understand that $P(A$ or $B)=P(A)+P(B)$, if A and B are mutually exclusive events? [G3]
- Can I explain the difference between dependent and independent events? [G3]
- When appropriate, can I organize given information within a Venn diagram? [G3]
- Do I understand that $P(A$ or $B)$ is determined by $P(A)+P(B)-P(A$ and $B)$ when events are not mutually exclusive? [G3]

Probability

COUNTING AND PROBABILITY

What M Grit Inn Ike

on the provincial exam?

EX A M PL E 1
If we shuffle a standard deck of 52 cards and randomly select one card, what is the probability of selecting a king or a queen?
A. $-\frac{1}{52}$
B. $-\frac{1}{26}$
C. $-\frac{1}{13}$
D. $-\frac{2}{13}$

Ways of Thinking about Solutions

This is simple probability using the word "or," and the two events are mutually exclusive.

$$
\begin{aligned}
& P(K)=\frac{4}{52} \rightarrow \text { number of kings } \\
& P(Q)=\frac{4}{52} \\
& \text { So, } P(K \text { or } Q)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13} \\
& \text { So } D \text { is the insure }
\end{aligned}
$$

Probability

COUNTING AND PROBABILITY

E X A M P L E 2

Two coins and one die are simultaneously tossed on a table. What is the probability of obtaining two heads and a 6?
A. $-\frac{5}{12}$
B. $-\frac{1}{24}$
C. $-\frac{1}{5}-$
D. $-\frac{1}{8}-$

Ways of Thinking about Solutions

How many different ways can two coins land?
two coins can land $H H, H T, T H, T T$. Qnly one of these is $H H$, so $P(2 H)=1 / 4$
... the die thas 6 faces, $P(6)=1 / 6$
$\therefore P(2 H$ and 6$)=\frac{1}{4} \cdot \frac{1}{6}=\frac{1}{24}$, so B is correct

E X A M P L E 3

Some students were asked whether they watch hockey or football. The results are shown in the following Venn diagram:

What is the probability that a person chosen at random watches hockey?
A. $-\frac{2}{5}$
B. $-\frac{1}{2}-$
C. $-\frac{4}{5}-$
D. $-\frac{3}{10}$

COUNTING AND PROBABILITY

Ways of Thinking about Solutions

Altogether, 50 students were asked, and 25 students watch hockey, so ..

$$
P(H)=\frac{25}{50}=\frac{1}{2}, \text {, } B \text { is correct }
$$

Can DOOthese on mV OWIR?

1. Two boxes contain marbles. The first contains five red marbles and three white marbles. The second box contains four black marbles and seven green marbles. One marble is chosen at random from each box. What is the probability that a white and a black marble will be chosen?
A. $-\frac{3}{22}$
B. $\quad \frac{33}{32}$
C. $-\frac{1}{12}$
D. $\frac{12}{25}$
2. Mr. Smith has three pairs of black pants and two pairs of grey pants in the first drawer of his dresser. In the second drawer, he has one white shirt and four multi-coloured shirts. He gets up late one morning and without looking quickly grabs a pair of pants from the first drawer and a shirt from the second drawer. What is the probability that he grabs a pair of black pants and a white shirt?
A. $-\frac{3}{25}$
B. $-\frac{4}{25}$
C. $-\frac{4}{5}-$
D. $-\frac{2}{5}-$

COUNTING AND PROBABILITY

3. Two dice are rolled. What is the probability that both dice will land on the same number?
A. $-\frac{1}{36}$
B. $-\frac{1}{18}$
C. $-\frac{1}{6}-$
D. $-\frac{1}{2}-$
4. Forty people were surveyed and asked whether they use a mechanical pencil or a wooden pencil when writing a test. The results are shown in the Venn diagram below.

What is the probability that one person chosen at random does not use a wooden pencil when writing a test?
A. $\frac{9}{20}$
B. $-\frac{4}{5}-$
C. $-\frac{7}{10}$
D. $\frac{11}{20}$
5. Try these questions from the text.

Page 310 (questions 10, 11, and 12)
Page 312 (questions 21 to 24)
Page 313 (questions 25 to 28)
Page 314 (questions 30 and 31)

Probability COMBINATIONS AND PERMUTATIONS

PAGES 327 TO 339 IN THE TEXT

Ontenmes

I am expected to...

46 develop an understanding of factorial notation and apply it to calculating permutations and combinations

B8 determine probabilities using permutations and combinations

ㄴ. distinguish between situations that involve combinations and permutations
©8 develop and apply formulas to evaluate permutations and combinations

What do I HAVE to know?

- When I read a problem can I identify if the situation requires combinations or permutations? [G7]
- Do I know when and how to use factorial notation? [A6]
- Do I know when and how to apply the formula ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$? [A6, G8]
- Do I know when and how to apply the formula for ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$? [A6, G8]

What MIAHIT it Inok Fikent
 on the provincial exam?

E X A M P L E 1

Tim and Rebecca are the first and second students in a line of seven students waiting to buy tickets for a concert. The number of different orders in which the remainder of the students can line up behind them is
A. 5 !
B. 7 !
C. (5!)(2!)
D. $\frac{7!}{2!}$

COMBINATIONS AND PERMUTATIONS

Ways of Thinking about Solutions

Since Tim and Rebecca are already in line to buy tickets, there are only five people to line up behind them.
There are 5 different people to be in the third position, 4 different in the fourth position and so on. So 5! is the answer.

EX A M PL E 2

Use a real-life example to explain why ${ }_{4} \mathrm{C}_{4}=1$.

Ways of Thinking about Solutions

${ }_{4} C_{4}$ means "how many different ways are there for choosing four items out of four items, if the order doesn't matter?" Now, in real life ...
a pizza stare has a sale on 4-item pizzas Let's see, how many arrays are there to choose from the 4 toppings if 9 want all 4 toppings? There is only one way to choose.." "give me all 4 toppings."

EX A M PL E 3

A class is made up of 13 girls and 9 boys. If five students are chosen at random, what is the probability that five girls will be chosen?

COMBINATIONS
 AND PERMUTATIONS

Ways of Thinking about Solutions

There are 22 students altogether. Probability is the ratio of the number of students chosen to the total number of students. Is the number chosen a combination or a permutation?
number of successes $\Rightarrow 5$ girls chosen from 13 girls - the order of choice does not minster,
so a combination
total number of outcomes $\Rightarrow 5$ will be chosen from 22 students
So. $\frac{{ }_{23} C_{5}}{27 C_{5}}=\frac{1287}{26334}: 0.05$
\therefore The probability of choosing 5 girls is 0.05

$0 r$

$\frac{13}{22} \times \frac{12}{21} \times \frac{11}{20} \times \frac{10}{19} \times \frac{9}{18}=\frac{1287}{26334}=0.05$

EXAM P LE 4
The value of $1000!$ is

- $\overline{9} \overline{9} \overline{9}$!
A. 1
B. $1 . \overline{001}$
C. 1000
D. undefined

COMBINATIONS AND PERMUTATIONS

Ways of Thinking about Solutions

My calculator gives me an error message, so the numbers must be too big. Ill have to do this one by hand.

$$
\frac{1000!}{999!}=\frac{1000 \times 999 \times 998 \times \ldots \times 1}{999 \times 998 \times 997 \times \ldots \times 1}=1000
$$

so C is the answer

Fan D Dothese on my own?

1. You want to put eight different books on a shelf, side by side. In how many ways can these books be arranged?
A. 8 !
B. $\frac{8!}{2!}$
C. ${ }_{8} \mathrm{P}_{1}$
D. ${ }_{8} \mathrm{C}_{8}$

2. Peter, Mary, and Susan are part of a group of 10 people. An executive consisting of Peter as the president, Mary as the treasurer, and Susan as the secretary could be formed from this group. What is the probability this executive will be formed?
A. $-\frac{1}{10 \mathrm{P}_{3}^{-}}$
B. $\quad \frac{1}{10} \overline{C_{3}}$
C. $\begin{array}{r}3 \\ -10{ }_{3}^{-}\end{array}$
D. $\begin{aligned} &-3 \\ & 10-C_{3}\end{aligned}$
3. A prom committee of seven will be chosen from 10 boys and 12 girls. Calculate the probability that the committee will be made up of all girls.
4. Use a real-lifeexample to explain why ${ }_{5} G_{2}={ }_{5} G_{3}$.
5. Try these questions from the text:

Pages 330 and 331 (questions 8, 9, and 11)
Page 332 (questions 16 and 17)
Pages 333 and 334 (questions 21-26)
Page 363 (questions 12-16)

Probability
 CONDITIONAL PROBABILITY

PAGES 319 TO 326 IN THE TEXT

Ontanmes

I am expected to...

C5 [ado]
determine conditional probabilities

What io I HAVE to know?

- Do I understand what conditional probability means? [G5adv]
- Do I know that $P(A \mid B)$ is used to denote conditional probability and that it means " the probability of event B occurring, given $A^{\prime \prime}$? [G5adv]
- Can I apply the formula $P(A \mid B)=P(A$ and $B)$? [G5Adv] $-\bar{P} \overline{(} \bar{B})$

(Fan DOOthese On mV OWI?

1. A survey of 352 people resulted in this table:

	Developed a cold	Did not develop a cold	Total
Took vitomins regularly	46	139	185
Did not toke vitamins regularly	115	52	167
Total	161	191	352

What is the probability that a person who developed a cold did not take vitamins regularly?
A. $115 / 352$
B. $115 / 167$
C. $46 / 352$
D. 115/161

Probability
 CONDITIONAL PROBABILITY

2. The following table shows data about students enrolled in grade 12 math at a high school:

Assume that event A is "enrolled in Advanced Math 12 " and event B is "male." Calculate
(a) $P(A)$
(b) $P(B \mid A)$

Sex	Advanced Math 12	Math 12	Total
Male	63	85	148
Female	72	112	184
Total	135	197	332

3. Use the following chart to calculate the probability of a male being blonde.

	Blande	Not blande
Male	15	18
Female	8	12

4. Try these questions from the text:

Pages 320 and 321 (questions 47-50)
Page 362 (question 10)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: A STUDY GUIDE FOR STUDENTS PREPARING FOR

[^1]: A STUDY GUIDE FOR STUDENTS PREPARING FOR

[^2]: A STUDY GUIDE FOR STUDENTS PREPARING FOR

[^3]: A STUDY GUIDE FOR STUDENTS PREPARING FOR

[^4]: A STUDY GUIDE FOR STUDENTS PREPARING FOR

